期刊文献+

一种基于半监督GHSOM的入侵检测方法 被引量:23

A Method of Intrusion Detection Based on Semi-Supervised GHSOM
下载PDF
导出
摘要 基于神经网络的入侵检测方法是入侵检测技术的一个重要发展方向.在已有无监督生长型分层自组织映射(growing hierarchical self-organizing maps,GHSOM)神经网络算法的基础上,提出了一种半监督GHSOM算法.该算法利用少量有标签的数据指导大规模无标签数据的聚类过程.一方面借鉴cop-kmeans半监督机制,解决了原始算法中返回空划分的问题,并将其应用到GHSOM算法中.另一方面提出了神经元信息熵的概念作为子网生长的判断条件,提高了GHSOM网络子网划分的精度.此外还利用有标签的数据自动确定聚类结果的入侵类型.对KDD Cup 1999数据集和LAN环境下模拟产生的数据集进行的入侵检测实验表明:相比于无监督的GHSOM算法,半监督的GHSOM算法对各种类型的攻击具有较高的检测率. Network intrusion detection technology based on artificial neural network is an important research direction in intrusion detection area. This paper proposes a semi-supervised GHSOM (growing hierarchical self-organizing maps) neural network algorithm, in which the clustering process of large amount of unlabeled data is conducted by small amount of labeled data. On the one hand, the idea of semi-supervised cop-kmeans algorithm is introduced into the unsupervised GHSOM algorithm, and the problem on returning no result is solved in the semi-supervised GHSOM algorithm. On the other hand, the concept of neural entropy is proposed and used as the judgment condition of the neural network growth to improve precision of division of subnets of the neural network. Besides, the labeled data are also used to determine the intrusion type of nerve cells automatically. The network intrusion detection experiment results based on KDD Cup 1999 data set and the data set collected in LAN both show that the total detection rate of the network intrusion detection system through employing semi- supervised GHSOM algorithm is higher than the network detection rate of the intrusion detection system through employing unsupervised GHSOM algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第11期2375-2382,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61070237 61232005 61073156)
关键词 入侵检测 半监督 生长型分层自组织映射 聚类 信息熵 intrusion detection semi-supervised growing hierarchical self-organizing maps(GHSOM) clustering entropy
  • 相关文献

参考文献12

  • 1Lichodzi Jewski P, Zincir-Heywood A N, et al. Dynamic intrusion detection using self-organizing maps [C/OL] //Proc of the 14th Annual Canadian Information Technology Security Symp, [2012-08-24]. http://scholar. google, com. hk/scholar?q = Dynamic + Intrusion + Detection + Using + Self-Organizing + Maps&.hl = zh-CN&.as_ sdt = O&as_ vis = 1 &oi = scholart&sa = X&ei = RlU3UOSTCOqViAfIqoGQBA &ved=OCBOQgQMwAA. 被引量:1
  • 2Horeis T. Intrusion detection with neural networkscombination of self-organizing maps and radial basis function networks for human expert integration [R/OL]. Passau , Computational Intelligence Society, 2003 [2011-11-01]. http://www.docin.com/p-644658881. html. 被引量:1
  • 3J irapummin C, Wattanapongsakorn N, Kanthamanon P. Hybrid neural networks for intrusion detection system [C] // Proc of the 2002 Int Technical Conf on Circuits/Systems, Computers and Communications. Piscataway, NJ: IEEE, 2002: 928-931. 被引量:1
  • 4Albayrak S, Muller A, Scheel C, et al. Combining selforganizing map algorithms for robust and scalable intrusion detection [C] //Proc of the 2005 Int Conf on Computational Intelligence for Modeling, Control and Automation. Los Alamitos, CA: IEEE Computer Society, 2005: 123-130. 被引量:1
  • 5Jiang Dianbo, Yang Yahui , Xia Min. Research on intrusion detection based on an improved SOM neural network [C] //Proc of the 5th Int Conf on Information Assurance and Security. Los Alamitos: IEEE Computer Society, 2009: 400-403. 被引量:1
  • 6Mansour N, Maya I, Faour A, et al. Filtering intrusion detection alarms [J]. Cluster Computing, 2010, 130): 19- 29. 被引量:1
  • 7Shehab M, Mansour N, Faour A. Growing hierarchical selforganizing map for filtering intrusion detection alarms [C] //Proc of the Int Symp on Parallel Architectures, Algorithms, and Networks. Piscataway, NJ: IEEE, 2008: 167-172. 被引量:1
  • 8杨雅辉,姜电波,沈晴霓,夏敏.基于改进的GHSOM的入侵检测研究[J].通信学报,2011,32(1):121-126. 被引量:24
  • 9Basu S, Baner lee A, Mooney' R J. Semi-supervised clustering by seeding [C] //Proc of the 19th Int Conf on Machine Learning. San Fransisco . Morgan Kaufmann, 2002: 19-26. 被引量:1
  • 10Wagstaff K, Cardie C, Rogers S, er al. Constrained k-means clustering with background knowledge [C] //Proc of the 18th Int Conf on Machine Learning. San Fransisco , Morgan Kaufmann, 2001: 577-584. 被引量:1

二级参考文献9

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2FAOUR A, LERAY P, ETER B. Growing hierarchical self-organizing map for alarm filtering in network intrusion detection systems[A]. Proceedings of 1st IFIP International Conference on New Technologies, Mobility and Security[C]. Paris, France, 2007. 被引量:1
  • 3Index of / databases/kddcup99 [EB/OL]. http://kdd.ics.uci.edu/data- bases/kddcup99.2009. 被引量:1
  • 4JIANG D B, YANG Y H, XIA M. Research on intrusion detection based on an improved sore neural network[A]. Proceedings of Fifth International Conference on Information Assurance and Security[C]. Xi'an, China, 2009. 400-403. 被引量:1
  • 5DEPREN O, TOPALLAR M, ANARIM E, et al. An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks[J]. Expert Systems with Applications,2005,29: 713-722. 被引量:1
  • 6RAMADAS M, OSTERMANN M, TJADEN B. Detecting anomalous network traffic with self-organizing maps[A]. Proceedings of the 6th International Symposium on Recent Advances in Intrusion Detection[C]. Pittsburgh, PA, USA, 2003. 被引量:1
  • 7RAUBER A, MERKL D, DrFFENBACH M. The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data[J]. IEEE Transactions on Neural Networks, 2002,13(6): 1331-1341. 被引量:1
  • 8PALOMO E J, DOMINGUEZ E, LUQUE R M, et al. A new GHSOM model applied to network security[J]. Lecture Notes in Computer Science Springer, 2008, 5168: 680-689. 被引量:1
  • 9PALOMO E J, DOMINGUES E, LUQUE R M, et al. An intrusion detection system based on hierarchical self-organization[J]. Journal of Information Assurance and Security4, 2009, 4(3): 209-216. 被引量:1

共引文献23

同被引文献193

引证文献23

二级引证文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部