期刊文献+

基于边缘特征引导的深度图像超分率重建 被引量:4

DEPTH MAP SUPER-RESOLUTION RECONSTRUCTION BASED ON THE EDGE FEATURE-GUIDED
下载PDF
导出
摘要 针对TOF(Time of Flight)相机深度图像在超分辨重建过程中易出现边缘模糊、纹理映射问题,在联合双边上采样滤波器的基础上提出一种基于深度图像自身边缘特征引导的超分辨重建方法。通过低分辨深度图像的边缘特征引导,将深度图像分为不同的区域,根据滤波区域性质的不同,对联合双边上采样滤波器模型中的颜色相似项进行不同加权。同时为了进一步保持图像边缘,在深度图像边缘部分加入一个结构保持项。最后利用联合双边上采样滤波器模型重建出高分辨深度图像。实验结果表明,该方法不仅提高了TOF深度图像的分辨率,而且很好地保护了深度图像的边缘结构,取得了较好的效果。 It is prone to edge blurring and texture copying in the depth map from TOF camera super-resolution process,a new super-resolution reconstruction method based on the depth map 's edge feature-guided is proposed.According to the edge feature of low resolution depth map,the depth map is divided into different regions and then the different color similarity weighting is calculated along with the different filtering regions. In order to protect the image edge further,a structure preserved term is added in the edge region. Finally,the high resolution depth map is calculated by using the joint bilateral up-sampling filter model. The experimental results show that the proposed method not only improves the resolution of depth map from TOF camera,but also protects the image edge structure and achieves a well result.
出处 《计算机应用与软件》 2017年第2期220-225,共6页 Computer Applications and Software
基金 国家自然科学基金项目(614031160 61273237) 中国博士后基金项目(2014M560507)
关键词 超分辨重建 深度图像 联合双边上采样滤波器 边缘特征 Super-resolution reconstruction Depth map The joint bilateral up-sampling filter Edge feature
  • 相关文献

参考文献4

二级参考文献69

  • 1李民.基于稀疏表示的超分辨率重建和图像修复研究[D].成都:电子科技大学,2011. 被引量:2
  • 2Weinland D,Ronfard R,and Boyer E.A survey of vision-based methods for action representation,segmentation and recognition[J].Computer Vision and Image Understanding,2011,115(2):224-241. 被引量:1
  • 3Lange R.3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology[D].[Ph.D.dissertation].University of Siegen,2000. 被引量:1
  • 4Chen L,Wei H,and Ferryman J M.A survey of human motion analysis using depth imagery[J].Pattern Recognition Letters,2013,34(15):1995-2006. 被引量:1
  • 5Muller M and Roder T.Motion templates for automatic classification and retrieval of motion capture data[C].Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.Eurographics Association,Switzerland,2006:137-146. 被引量:1
  • 6Xia L,Chen C C,and Aggarwal J K.View invariant human action recognition using histograms of 3D joints[C].2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),Providence,2012 20-27. 被引量:1
  • 7Yang X and Tian Y L.Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[C].2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),Providence,2012:14-19. 被引量:1
  • 8Seidenari L,Varano V,Berretti S,et al.Weakly Aligned Multi-part Bag-of-Poses for Action Recognition from Depth Cameras[M].Springer Berlin Heidelberg:New Trends in Image Analysis and Processing,2013:446-455. 被引量:1
  • 9Shotton J,Sharp T,Kipman A,et al.Real-time human pose recognition in parts from single depth images[J].Communications of the ACM,2013,56(1):116-124. 被引量:1
  • 10Li W,Zhang Z,and Liu Z.Action recognition based on a bag of 3D points[C].2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),San Francisco,CA,2010:9-14. 被引量:1

共引文献28

同被引文献30

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部