期刊文献+

基于稀疏正则化结合NLS的超分辨率图像重建

Super-Resolution Image Reconstruction Based on Fusion of Sparse Regularization and NLS
下载PDF
导出
摘要 为了保持高光谱(HS)超分辨率重建过程中的频谱一致性和边缘锐度,提出一种基于空间谱结合非局部相似性的超分辨率重建算法。首先,使用HS图像生成模型,采用稀疏正则化解决全色(PAN)图像和HS图像重建的病态问题求逆;然后分析了从高空间分辨率到低空间分辨率数据生成的丰度系数映射;最后利用非局部相似性,设计空间谱联合正则化项。使用机栽可见光/红外成像光谱仪(AVIRIS)和Hyperion图像测试该算法,实验结果表明,提出的算法重建图像在PSNR,SSIM和FSIM方面明显高于其他优秀算法,在SAM和ERGAS方面明显低于其他优秀算法,在光谱失真方面丢失最少,仪有2%~3%,低于其他算法30%左右,且重建效果更加清晰自然。 To maintain spectral consistency and edge sharpness during the processing of soper-resolution reeonstruction of hyper- spectral (HS) images, a joint super-resolution algorithm based on fusion of space spectrum and non-local similarity (NLS) is pro- posed. Firstly, HS images are used to generate model, and sparse regularization is used to solve the inversion of the ill problem of the reconstruction of panchromatic (PAN) images and ItS images. Then, the generated map of abundance coefficients between spatial high resolution and low resolution is analyzed. Finally, space spectru,n joint regularization term is designed hy non-local similarity. The proposed method is tested with Airborne Visible/Infrared hnaging Spectrometer (AV1R1S) and Hyperion images. Experimental results show that the reconstructed image by this paper is obviously higher than other good algorithms on PSNR, SSIM and FSIM, and lower than other outstanding algorithms significantly on SAM and ERGAS. Proposed algorithm misses the least spectral with only 2% to 3%, which is 30% lower than other algorithms, and the reconstruction results are more natural and clear.
出处 《电视技术》 北大核心 2015年第17期25-30,共6页 Video Engineering
基金 江苏省高校自然科学研究项目(14KJD520009)
关键词 高光谱 超分辨率重建 非局部相似性 稀疏正则化 全色图像 hyperspectral super-resolution reconstruction nonlocal similarity sparse regularization panchromatic image
  • 相关文献

参考文献14

  • 1史云静,虞涛,朱秀昌.基于训练集分层的图像超分辨率重建[J].电视技术,2012,36(19):18-22. 被引量:3
  • 2ZHAO Y, YANG J, ZHANG Q, et al. Hyperspe.lral imagery super- resolution by spm'se representation and spectral regularization[ J ]. EUR- ASIP Journal on Advances in Sign Prtx:essing ,2011,17 ( 1 ) : 1-10. 被引量:1
  • 3ZHANG H, YANG Z, ZHANG L, et al. Super-resolution recon- struction for multi-angle remote sensing images considering resolu- tion differenees[ J]. Remote Sensing,2014,6( 1 ) :637-657. 被引量:1
  • 4ZHANG H, ZHANG L, SHEN H. A super-resolution reconstruclion algorithm for hyperspectral images [ J ]. Signal Processing, 2012, 92 (9) : 2082-2096. 被引量:1
  • 5赵妍..基于MAP的高光谱图像超分辨率方法研究[D].哈尔滨工程大学,2010:
  • 6杨宇翔,曾毓,何志伟,高明煜.基于自适应权值滤波的深度图像超分辨率重建[J].中国图象图形学报,2014,19(8):1210-1218. 被引量:8
  • 7EASON D T, ANDREWS M. Total variation regularization via con- tinuation to recover compressed hyperspectral inmges [ J ]. IEEE Trans. Image Processing: a Publication of the IEEE Signal Process- ing Society,2015,24( 1 ) : 284-293. 被引量:1
  • 8SU Y F, FOODY G M, MUAD A M, et al. Combining Hopfield neural network and contouring methods to enhance super-lsolution mapping[ J]. IEEE Journal of Selected Topics in Applied Earth Ob- servations and Remote Sensing,2012, 5 (5) :1403-1417. 被引量:1
  • 9MUAD A M, FOODY G M. Impact of land cover patch size on the accuracy of patch area representation in HNN-based super resolution mapping[ J]. 1EEE Journal of Selected Topics in Applied Earth Ob- servations and Remote Sensing,2012,5(5 ) : 1418-1427. 被引量:1
  • 10ZHANG H, LI J, HUANG Y, et al. A nonlocal weighted joint sparse representation classification method for hyper.-;pectral image- ry [ J ]. IEEE Journal of Selected Topics in Applied Earth Observa- tions and Remote Sensing,2014,7 ( 6 ) : 2056-2065. 被引量:1

二级参考文献25

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2H S Hou, H C Andrews. Cubic spline for image interpolation and digital filtering [J]. IEEE Transaction on Signal Pressing, 1978,26(6) :508 - 517. 被引量:1
  • 3S Mallet, Guoshen Yu. Super-Resolution with sparse mixing es- timators [ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2889 - 2900. 被引量:1
  • 4W T Freeman, T R Jones, E C Pasztor. Example-based super- resolution [ J ]. IEEE Computer Graphics and Applications, 2002,22(2) :56 - 65. 被引量:1
  • 5M Elad, D Datsenko. Example-based regularization deployed to super-resolution reconstruction of a single image [ J ]. The Computer Journal, 2007,50(4) : 1 - 16. 被引量:1
  • 6Yang Jian-chao, J Wright, T S Huang, Yi Ma. Image super-res- olution via sparse representation [J]. 1EEE Transaction on Im-age Procesfing,2010,19(ll):2861 - 2873. 被引量:1
  • 7Yang Jian-chao, J Wright, T S Huang, Yi. Ma, Image super- resolution as sparse representation of raw image patches [ A]. Proceedings of the 1F, IEEE Conference on Computer Vision and Pattern Recognition[ C]. Anchorage, AK, 2008.1 - 8. 被引量:1
  • 8R Zeyde, M Elad, M Protter. On single image scale-up using sparse-representations [ A] .Proceedings of the 7th International Conference on Curves and Surfaces [ C ]. Avignon: Avignon, France, 2010. 被引量:1
  • 9M Aharon, M Elad, A Bruckstein, The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse represen- tation [ J 3. IEEE, Transaction on Signal Processing, 2006, 54 (11) :4311 - 4322. 被引量:1
  • 10R Rubinstein, M Zibulevsky,M Elad. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pur- suit [ J/OL ]. http://www, cs. le, chnionac, il/N ronrubin/Publications/KSVD--OMP- v2. pdf, 2008-03-15. 被引量:1

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部