期刊文献+

基于多层运动历史图像的飞行时间相机人体运动识别 被引量:7

Human Activity Recognition Using Multi-layered Motion History Images with Time-Of-Fligh(TOF) Camera
下载PDF
导出
摘要 该文利用飞行时间(Time-Of-Fligh,TOF)相机提供的距离图像,在运动历史图像的基础上提出一种基于多层运动历史图像的人体运动识别方法。计算距离轮廓序列的运动能量图作为整体运动信息,同时根据距离变化量,计算前向、后向的多层运动历史图像作为局部运动信息,共同组成多层运动历史图像。为了解决Hu矩对不连续或具有噪声的形状较为敏感的问题,引入R变换对每层运动历史图像进行特征提取,串联形成特征向量送入SVM进行分类识别。实验结果表明,该识别方法可以有效识别人体运动。 A new method extended from motion history image called Multi-Layered Mmotion History Images (MLMHI) is proposed to the representation and recognition of human activity using depth images provided by Time-Of-Fligh (TOF) camera. Firstly, the motion-energy image of the depth silhouettes is computed as the global motion information. Then, the forward-MLMHI and backward-MLMHI is computed as the local motion information based on the variable of depth. The global and local motion information constitute the MLMHI lastly. Since the Hu moments are sensitive to disjoint shapes and noise, R transform is employed to extract features from every layered-MHI and concatenated to form a feature vector. The feature vector is used as the input of Support Vector Machine (SVM) for recognition. Experimental results demonstrate the effectiveness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第5期1139-1144,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61273237 61271121) 安徽省自然科学基金(11040606M149)资助课题
关键词 人体运动识别 距离图像 多层运动历史图像 R变换 Human activity recognition Depth image R transform
  • 相关文献

参考文献18

  • 1Weinland D,Ronfard R,and Boyer E.A survey of vision-based methods for action representation,segmentation and recognition[J].Computer Vision and Image Understanding,2011,115(2):224-241. 被引量:1
  • 2Lange R.3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology[D].[Ph.D.dissertation].University of Siegen,2000. 被引量:1
  • 3Chen L,Wei H,and Ferryman J M.A survey of human motion analysis using depth imagery[J].Pattern Recognition Letters,2013,34(15):1995-2006. 被引量:1
  • 4Muller M and Roder T.Motion templates for automatic classification and retrieval of motion capture data[C].Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.Eurographics Association,Switzerland,2006:137-146. 被引量:1
  • 5Xia L,Chen C C,and Aggarwal J K.View invariant human action recognition using histograms of 3D joints[C].2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),Providence,2012 20-27. 被引量:1
  • 6Yang X and Tian Y L.Eigenjoints-based action recognition using naive-bayes-nearest-neighbor[C].2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),Providence,2012:14-19. 被引量:1
  • 7Seidenari L,Varano V,Berretti S,et al.Weakly Aligned Multi-part Bag-of-Poses for Action Recognition from Depth Cameras[M].Springer Berlin Heidelberg:New Trends in Image Analysis and Processing,2013:446-455. 被引量:1
  • 8Shotton J,Sharp T,Kipman A,et al.Real-time human pose recognition in parts from single depth images[J].Communications of the ACM,2013,56(1):116-124. 被引量:1
  • 9Li W,Zhang Z,and Liu Z.Action recognition based on a bag of 3D points[C].2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),San Francisco,CA,2010:9-14. 被引量:1
  • 10Yang X,Zhang C,and Tian Y L.Recognizing actions using depth motion maps-based histograms of oriented gradients[C]Proceedings of the 20th ACM International Conference on Multimedia,New York,2012:1057-1060. 被引量:1

二级参考文献12

  • 1Kil Y J, Mederos B, Amenta N. Laser scanner superresolution// Proceedings of Symposium on Point-Based Graphics. Boston, USA: Eurographics Association, 2006: 9-15. 被引量:1
  • 2Ghobadi S E, Hartmann K, Weihs W, et al. Detection and classification of moving objects-stereo or time-of-flight images // Proceedings of International Conference on Computational Intelligence and Security. Guangzhou, China: IEEE Press, 2006:11-16. 被引量:1
  • 3Uwe H, Marc A. Combing time-of-flight depth and stereo images without accurate extrinsic calibration[J]. International Journal of Intelligent Systems Technologies and Applications, 2008, 5(3-4):325-333. 被引量:1
  • 4Beder C, Bartczak B, Koch R. A comparison of PMD-cameras and stereo-vision for the task of surface reconstruction using patchlets // Proceedings of IEEE International Conference Computer Vision and Pattern Recognition. Minneapolis, MN:IEEE Press, 2007: 1-8. 被引量:1
  • 5Prasad T A, Hartmann K, Weihs W, et al. First steps in enhancing 3D vision technique using 2D/3D sensors //Proceedings of the 11th Computer Vision Winter Workshop. Prague: Citeseer, 2006:82-86. 被引量:1
  • 6Huhle B, Fleck S, Schilling A. Integrating 3D time-of-flight camera data and high resolution images for 3DTV applications //Proceedings of IEEE 3DTV-Conference. Kos Island:IEEE Press, 2007:1-4. 被引量:1
  • 7Rajagopalan A N, Bhavsar A V, Wallhoff F, et al. Resolution enhancement of PMD range maps //Proceedings of the 30th DAGM symposium on Pattern Recognition. Munich, Germany: Springer, 2008:304-313. 被引量:1
  • 8Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images [J]. IEEE Transactions on Pattern and Machine Intelligence, 1984, 6(6):721-741. 被引量:1
  • 9Li S Z. Markov random field modeling in computer vision [M]. Tokyo:Springer, 1995:214-219. 被引量:1
  • 10Blake A, Zisserman A. Visual reconstruction [M]. Cambridge :The MIT Press, 1987:131-163. 被引量:1

共引文献14

同被引文献25

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部