期刊文献+

基于TOF三维相机相邻散乱点云配准技术研究 被引量:20

Adjacent Scatter Point Cloud Registration Technology Research Based on Three-dimensional Camera of Time of Flight
下载PDF
导出
摘要 针对基于飞行时间(Time-of-flight,TOF)原理的三维测距相机对物体完整表面进行三维点云建模中点云配准速度慢、精度低的问题,提出一种快速、易实现的散乱点云配准方法,该方法通过提取目标物体距离图像的特征点,采用非迭代的求解过程获取初始变换参数,实现点云初始位置配准。在此基础上,利用TOF相机强度图像的梯度值与基于局部3D空间分解的Knn算法寻找点云之间最邻近点作为匹配点对,根据原始迭代最近点算法的迭代过程对这些匹配点对进行迭代求解,获取点云之间最优的变换参数,同时结合错误匹配点对去除法则提高迭代点云匹配的精度,实现点云的精确位置配准。结合实际空间物体对该方法进行验证,试验结果表明,该点云配准方法与传统的配准方法相比,显著地提高配准速度和配准精度,将直接有助于提高后期物体曲面重建的精度,具有较高的实际应用价值。 Against the problem of low accuracy, slow speed of point cloud registration in 3D point cloud modeling on the surface of the object based on the principle of time of flight(TOF) camera, a fast, easy method is proposed to realize the scattered points clouds registration, this method realize the point cloud initial position registration through extracting feature point from distance image of target objects, obtaining the initial transform parameter using an iterative solving process. Based on this, using gradient value of intensity image of TOF camera and K-nearest neighbor algorithm based on the local decomposition of 3D space to find the closest point between point cloud as the matching point pair. According to the iterative process of primitive iterative closest point(ICP) algorithm to iterate the matching point pair and obtain the best transform parameter in point cloud, at the same time, improving the precision of iterative point clouds registration combined with the error matching point removing rule, to realize the point cloud precise location registration. To verify the algorithm combined with the actual space objects, the experimental results show that this point cloud registration improved speed and the precision of registration compared with the traditional registration method, this will help to improve the precision of object surface reconstruction, have a high practical value.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第12期8-16,23,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(60905005 61102153) 安徽省自然科学基金(11040606M149)资助项目
关键词 三维点云重建 点云立体粗配准 点云立体精配准 飞行时间相机 3D point clouds reconstruction Point clouds stereo coarse registration Point clouds stereo free registration Time of flight camera
  • 相关文献

参考文献25

  • 1袁夏..三维激光扫描点云数据处理及应用技术[D].南京理工大学,2006:
  • 2BLAIS G, LEVINE M D. Registering multiview range data to create 3D computer graphics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820-824. 被引量:1
  • 3宋超..三维光学成像系统中配准算法的研究[D].北京交通大学,2008:
  • 4GRESSIN A, MALLET C, DAVID N. Improving 3D lidar point cloud registration using optimal neighborhood knowledge[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 1-3: 111-116. 被引量:1
  • 5徐正光,田清,张利欣.图像拼接方法探讨[J].微计算机信息,2006,22(10X):255-256. 被引量:25
  • 6BAY H, ANDREAS E, TINNE T, et al. SURF: Speed up robust features[J]. Computer Vision and Image Understanding, 2006, 110(3): 346-359. 被引量:1
  • 7高隽编著..智能信息处理方法导论[M].北京:机械工业出版社,2004:325.
  • 8BASDOGAN C, OZTIRELI A C. A new feature based method for robust and efficient rigid-body registration of overlapping point clouds[J]. The Visual Computer, 2008, 24(7-9): 679-688. 被引量:1
  • 9AKCA D. Registration of point clouds using range and intensity information[C]//Recording, Modeling and Visualization of Cultural Heritage, Astoria, Switzerland, 2005: 115-126. 被引量:1
  • 10高隽著..图像理解理论与方法[M].北京:科学出版社,2009:542.

二级参考文献108

共引文献464

同被引文献185

引证文献20

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部