期刊文献+

对象级特征引导的显著性视觉注意方法 被引量:2

Significant visual attention method guided by object-level features
下载PDF
导出
摘要 针对已有视觉注意模型在整合对象特征方面的不足,提出一种新的结合高层对象特征和低层像素特征的视觉注意方法。首先,利用已训练的卷积神经网(CNN)对多类目标的强大理解能力,获取待处理图像中对象的高层次特征图;然后结合实际的眼动跟踪数据,训练多个对象特征图的加权系数,给出对象级突出图;紧接着提取像素级突出图,并和对象级突出图融合获得显著图;最后,在OSIE和MIT数据集上验证了该方法,并与国际上流行的视觉注意方法进行对比,结果显示该算法在OSIE数据集上获得的AUC值相对更高。实验结果表明,所提方法能够更加充分地利用图像中对象信息,提高显著性预测的准确率。 Concerning the defects of fusing object information by existing visual attention models, a new visual attention method combining high-level object features and low-level pixel features was proposed. Firstly, high-level feature maps were obtained by using Convolutional Neural Network (CNN) which has strong understanding of multi-class targets. Then all object feature maps were combined by training the weights with eye fixation data. Then the saliency map was obtained by fusing pixellevel conspicuity map and object-level conspicuity map. Finally, the proposed method was compared with many popular visual attention methods on OSIE and MIT datasets. Compared with the contrast methods, the Area Under Curve (AUC) result of the proposed method is increased. Experimental results show that the proposed method can make full use of the object information in the image, and increases the saliency prediction accuracy.
作者 杨凡 蔡超
出处 《计算机应用》 CSCD 北大核心 2016年第11期3217-3221,3228,共6页 journal of Computer Applications
基金 华为创新基金资助项目(YJCB2010022IN)~~
关键词 视觉注意 自顶向下 显著性 对象信息 卷积神经网 visual attention top-down saliency object information Convolutional Neural Network (CNN)
  • 相关文献

参考文献22

  • 1BORJI A, ITTI L. State-of-the-Art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):185-207. 被引量:1
  • 2ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259. 被引量:1
  • 3HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]//NIPS 2006:Proceedings of the 2006 Advances in Neural Information Processing Systems. Cambridge:MIT Press, 2006:545-552. 被引量:1
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[EB/OL].[2015-10-10]. https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf. 被引量:1
  • 5BORJI A, ITTI L. Exploiting local and global patch rarities for saliency detection[C]//CVPR 2012:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:478-485. 被引量:1
  • 6VIG E, DORR M, COX D. Large-scale optimization of hierarchical features for saliency prediction in natural images[C]//CVPR 2014:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:2798-2805. 被引量:1
  • 7BRUCE N, TSOTSOS J. Saliency based on information maximization[EB/OL].[2015-10-10]. https://papers.nips.cc/paper/2830-saliency-based-on-information-maximization.pdf. 被引量:1
  • 8LI J, LEVINE M, AN X, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):996-1010. 被引量:1
  • 9BORJI A, SIHITE D, ITTI L, et al. Probabilistic learning of task-specific visual attention[C]//CVPR 2012:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:470-477. 被引量:1
  • 10ZHANG L, TONG M, MARKS, T, et al. SUN:a Bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8(7):Artile No. 32. 被引量:1

二级参考文献24

  • 1Itti L, Koch C. Computational modelling of visual attention[J]. Nature Reviews Neuroscienee, 2001, 2(3): 194- 203. 被引量:1
  • 2Treisman A M, Gelade G. A feature integration theory of attention[J]. Cognitive Psychology, 1980, 12 (1) :97- 136. 被引量:1
  • 3Wolfe J M. Guided search 2.0= A revised model of visual search[J].. Psychonomie Bulletin & Review, 1994, 1(2): 202 -238. 被引量:1
  • 4Eriksen C W, St James J D. Visual attention within and around the field of focal attention: A zoom lens model[J].Perception b-Psychophysics, 1986, 40(4): 225-240. 被引量:1
  • 5Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J].Human Neurobiology, 1985, 4(4): 219- 227. 被引量:1
  • 6Olshausen B A, Anderson C H, Van Essen D C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic rooting of information[J].Journal of Neuroscience, 1993, 13(11): 4700-4719. 被引量:1
  • 7Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998 20(11) : 1254-1259. 被引量:1
  • 8Kadir T, Brady M. Saliency, scale and image description [J].International Journal of Computer Vision, 2001, 45 (2): 83-105. 被引量:1
  • 9Hou X, Zhang L. Saliency detection: a spectral residual approach[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern. 2007: 1-8. 被引量:1
  • 10Walther D, Koch C. Modeling attention to salient protoobjects[J].Neural Networks, 2006, 19(9): 1395 -1407. 被引量:1

共引文献2

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部