期刊文献+

基于有限元法的新型汽车门锁中塑料斜齿轮强度仿真分析 被引量:8

STRENGTH SIMULATION OF PLASTIC HELICAL GEARS IN NEW CAR DOOR LOCK BASED ON FINITE ELEMENT ANALYSIS
下载PDF
导出
摘要 为研究某新型汽车门锁中的塑料斜齿轮在工作条件下的轮齿受力情况,运用Abaqus建立了斜齿轮啮合的有限元模型,基于非线性接触算法对塑料斜齿轮的接触过程进行了仿真分析,并得到塑料斜齿轮的接触应力与弯曲应力。运用刘易斯方程及齿轮赫兹应力理论对塑料斜齿轮啮合过程中的许用应力进行了理论计算,并与有限元仿真结果进行对比;结果验证了塑料齿轮的强度满足实际工作的要求,并指出齿轮正常啮合过程中最大接触应力出现在齿轮双齿啮合区间,而最大弯曲应力发生在两齿啮合即将进入三齿啮合位置,此时齿轮容易发生疲劳破坏,提出了提高齿轮轮齿强度的改进方案。研究为塑料齿轮的强度分析提供了理论依据。 To study the stress of plastic helical gears in the new type car door lock under the working condition,establish the finite element model of helical gear mesh through ABAQUS,the contact process of plastic helical gears is simulated and analyzed based on nonlinear contact algorithm,and obtain the contact stress and bending stress of plastic helical gears. According to Lewis equation and gear Hertz stress theory to calculate the stress of the plastic helical gear meshing process,and compare with the finite element simulation results. The results verify the strength of plastic gears meet actual requirements,and point out the maximum contact stress in the normal engagement process appears in the double teeth meshing zone,the maximum bending stress appears in the three teeth meshing zone,gear prone to fatigue failure in those positions,propose advice to improve the strength of the gear teeth. The study prodives theory basis for the strength analysis of plastic gears.
出处 《机械强度》 CAS CSCD 北大核心 2017年第1期143-148,共6页 Journal of Mechanical Strength
关键词 塑料斜齿轮 有限元分析 动态接触分析 齿轮强度 Plastic helical gear Finite element analysis Dynamic contact analysis Gear strength
  • 相关文献

参考文献10

二级参考文献30

  • 1吴凤江,孙力,高晗璎,王有琨.桥式驱动功率MOSFET的电磁干扰与抑制[J].南京航空航天大学学报,2005,37(1):29-33. 被引量:8
  • 2JohnsonKL 徐秉业 罗学富 刘信声 等译.接触力学[M].北京:高等教育出版社,1992.275-316. 被引量:74
  • 3梅沢清彦.ほすぱ歯车の负荷がみ合い试验(第1报,たおみの近似式)[J].日本機械学會論文集,1972,38(308):896-904. 被引量:1
  • 4GOSSELIN C, GAGNON P, CLOUTIER L. Accurate tooth stiffness of spiral bevel gear teeth by the finite strip method [J]. ASME Journal of Mechanical Design, 1998, 120: 599-605. 被引量:1
  • 5MENNEM R C. Parametrically excited vibrations in spiral bevel geared systems[D].West Lafayette:Purdue University, 2004. 被引量:1
  • 6FAKHER C, TAHAR F, MOHAMED H. Analytical modelling of spur gear tooth crack and influence on gear mesh stiffness[J]. European Journal of Mechanics A/Solids, 2009(28): 461-468. 被引量:1
  • 7FAYDOR L. Litvin gear geometry and applied theory [M]. Cambridge: Cambridge University Press, 2004. 被引量:1
  • 8KUANG J H, YANG Y T. An estimate of mesh stiffness and load sharing ratio of a spur gear pair [C]// Proceedings of the ASME Journal of 12th International Power Transmission and Gearing Conference. Saottsdale, Arizona, 1992, DE-43-1: 1-9. 被引量:1
  • 9JOHNSON K L. Contact mechanics [M]. Cambridge: Cambridge University Press, 1985. 被引量:1
  • 10Barlam D, Zahavi E. The reliability of solutions in contact problem s [J ]. Comp & Struct, 1999, 70: 35- 45. 被引量:1

共引文献203

同被引文献57

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部