期刊文献+

ZnO-NPs对反硝化同时甲烷化体系抑制作用的数学模拟 被引量:1

Modeling the inhibitory effect of ZnO-NPs on simultaneous denitrification and methanation system
下载PDF
导出
摘要 通过建立反硝化同时甲烷化(SDM)扩展模型,动态模拟ZnO-NPs对酸化菌、产甲烷菌和反硝化菌的抑制作用.结果表明,该模型能较好地用于分析ZnO-NPs对SDM体系的抑制作用,主要表现为底物利用速率的抑制.在ZnO-NPs的抑制效应上产甲烷菌比反硝化菌更敏感.添加50、100、200 mg·L^(-1)的ZnO-NPs使甲烷量分别降为对照的96.2%、79.9%、62.8%,但氮气产量未受影响.结合遗传算法和回归拟合,对生化过程底物利用速率和抑制性常数进行估计,得到:KI,NO_2=0.00007<KI,NO_3=0.042;KI,ZnO,bu=0.094<KI,ZnO,pro=0.10<KI,ZnO,ac=4.45,证实了NO_2^-对产甲烷菌的抑制强于NO_3^-,ZnO-NPs对酸化菌的抑制强于产甲烷菌. An extended model for simultaneous denitrification and me developed to simulate dynamically the inhibitory effect of ZnO-NPs on methanogens and denitrifying bacteria. The results showed that the above properly the inhibitory effect of ZnO-NPs on the SDM system, mainly utilization rate. The response for methanogens thanogenesis ( SDM ) was acid - producing bacteria, model was able to describe the inhibition of substrate to the inhibition of ZnO-NPs was more sensitive to that of denitrifying bacteria. Methane production with addition of 50, 100 and 200 mg· L^-1 ZnO-NPs decreased to 96.2%, 79.9% and 62.8% of the control, respectively, whereas the nitrogen production was not inhibited notably. The substrate utilization efficiency and inhibitory constants were estimated by the combination of Genetic Algorithm and Regression Fitting and followed the order of K1,No2 = 0.00007 〈 KI,No3 = 0. 042 ; KI,ZnO,bu = 0.094 〈 KI,ZnO,pro = 0. 10 〈 KI,ZnO,ac = 4.45. These results demonstrated that the order of inhibitory effect of N-oxides on methanogens was NO2^- 〉 NO3^-, and ZnO NPs had a stronger inhibitory effect on acid-producing bacteria compared to methanogens.
作者 陈云 石先阳 CHEN Yun SHI Xianyang(School of Resource and Environmental Engineering, Anhui University, Hefei, 230039, Chin)
出处 《环境化学》 CAS CSCD 北大核心 2016年第12期2599-2605,共7页 Environmental Chemistry
基金 国家自然科学基金(51278001)资助~~
关键词 ZnO-NPs.反硝化同时甲烷化(SDM) 抑制 动态模拟 ZnO-NPs, simultaneous denitrification and methanogenesis ( SDM ), inhibitory effect,simulation dynamically.
  • 相关文献

参考文献6

二级参考文献91

  • 1汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳,王海芳,贾光.纳米材料生物效应及其毒理学研究进展[J].中国科学(B辑),2005,35(1):1-10. 被引量:100
  • 2姜利荣,赵超,黄应平,李瑞萍.可见光照射下α-FeOOH光催化降解有机污染物的研究[J].环境化学,2007,26(4):434-438. 被引量:20
  • 3[1]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法.第四版,北京:中国环境科学出版社,2002,300-311. 被引量:106
  • 4Gaya U I, Abdullah A H, Hussein M Z, et al. Photocatalytic removal of 2,4,6-trichlorophenol from water exploiting commercial ZnO powder[J]. Desalination, 2010, 263: 176-182. 被引量:1
  • 5Cao B Q, Cai W P. From ZnO nanorods to nanoplates: Chemical bath deposition growth and surface-related emissions[J]. J Phys Chem C, 2008, 112(3): 680-685. 被引量:1
  • 6Daneshvar N, Salari D, Khatee A R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2/3): 317-322. 被引量:1
  • 7Chu D W, Yoshitake M, Tatsuki O, et al. Formation and photocatalytic application of ZnO nanotubes using aqueous solution[J]. Langmuir, 2009, 26(4): 2811-2815. 被引量:1
  • 8Wang Y X, Li X Y, Wang N, et al. Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities[J]. Separation and Purification Technology, 2008, 62: 727-732. 被引量:1
  • 9Yu J G,Yu X X. Hydrothermal synthesis and photocatalytic acivity of zinc oxide hollow spheres[J]. Environ Sci Technol, 2008, 42(13): 4902-4907. 被引量:1
  • 10Kharissova O V, Kharisov B I. Less-Common nanostructures in the forms of vegetation[J]. Ind Eng Chem Res, 2010, 49(22): 11142-11169. 被引量:1

共引文献46

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部