期刊文献+

基于差分进化的Unscented FastSLAM2.0算法 被引量:5

FASTSLAM2.0 ALGORITHM BASED ON UNSCENTED DIFFERENTIAL EVOLUTION ALGORITHM
下载PDF
导出
摘要 针对Fast SLAM2.0算法中重采样过程带来的"粒子耗尽"问题,将差分进化引入进来,提出一种基于差分进化的无迹Fast SLAM2.0算法。首先采用unscented粒子滤波器估计机器人的路径后验概率,然后采用扩展卡尔曼滤波器对环境路标进行估计和更新,最后引入改进的差分进化算法代替重采样过程来优化粒子。仿真实验表明,与Fast SLAM2.0算法相比,该方法提高了机器人在路径估计和路标估计上的精度,验证了算法的有效性。 Resampling process often leads to the sample impoverishment problem in FastSLAM2.0. In order to solve the problem, a SLAM method based on differential evolution (DE) is presented by introducing DE's idea into the unscented FastSLAM2.0. Firstly, it estimates the robot path with unscented particle filter, and u,,es extended Kalman filter to estimate and update the map. Then using the improved differential evolution algorithm replaces resampling process. Simulation results show that: compared with FastSLAM2.0, the presented method improves the accuracy of robot path and the landmark positions estimation. Results show the validity of the proposed algorithm.
出处 《井冈山大学学报(自然科学版)》 2016年第6期48-54,共7页 Journal of Jinggangshan University (Natural Science)
基金 特殊环境机器人技术四川省重点实验室开放基金项目(13zxtk06)
关键词 同时定位与地图构建 移动机器人 粒子滤波器 unscented卡尔曼滤波器 差分进化算法 simultaneous localization and map building (SLAM) mobile robot particle filter unscented Kalman filter differential evolution algorithm
  • 相关文献

参考文献3

二级参考文献50

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2Durrant-Whyte H,Bailey T.Simultaneous localization and mapping(SLAM):Part I[J].IEEE Robotics and Automation Magazine,2006,13(2):99-110. 被引量:1
  • 3Zhi Q Wei,Jing Cao,Bo Yin.Improved FastSLAM based onthe particle fission for mobile robots[C].Xiamen,China:8thIEEE International Conference on Control and Automation,2010:1379-1384. 被引量:1
  • 4Tim Bailey,Juan Nieto,Eduardo Nebot.Consistency of theFastSLAM algorithm[C].Orlando,Florida:Proceedings ofthe IEEE International Conference on Robotics and Automa-tion,2006:424-429. 被引量:1
  • 5Chanki Kim,Rathinasamy Sakthivel,Wan Kyun Chung.Un-scented FastSLAM:a robust and efficient solution to theSLAM problem[J].IEEE Transactions on Robotics,2008,24(4):808-820. 被引量:1
  • 6ELFES A, MORAVEC H. High resolution maps from wide angle sonar [C] // Proc of the IEEE lnt Conf on Robotics and Automation.St. Louis MO: IEEE Press, 1985: 116-121. 被引量:1
  • 7BORENSTEIN J,EVERETT H R,FENG L,et al.Mobile robot positioning: sensors and techniques [J]. J of Robotic Systems, Special Issue on Mobile Robots,1997,14(4):231 - 249. 被引量:1
  • 8SMITH R, SELF M, CHEESEMAN P. A stochastic map for uncertain spatial relationships [C]//Ptrg, of the 4th Int Symposium on Robotic Research. Cambridge MA: MIT Press, 1987:467 - 474. 被引量:1
  • 9THRUN S, BUCKEN A. Integrating grid-based and topological maps for mobile robot navigation [ C]//Proc of the 13th National Conf on Artificial Intelligence. Portland950. 被引量:1
  • 10ORIOLO G, ULIVI G,VENDITTELLI M.Fuzzy maps: A new tool for mobile robot perception and planning [J]. J of Robotic System,1997,14(3) : 179 - 197. 被引量:1

共引文献65

同被引文献18

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部