期刊文献+

基于UKF与模型误差的交互式多模型算法 被引量:1

Interacting Multiple Model Algorithm Based on UKF and Model Error
下载PDF
导出
摘要 在最小距离设计准则下,提出了一种基于Monte-Carlo采样和K均值聚类的模型集合设计实现方法。通过讨论由于真实模式与模型之间的差异所可能引发的问题,提出基于UKF与模型误差的交互式多模型改进算法。新算法中每个模型采用Unscented Kalman Filter处理非线性估计问题。Monte-Carlo仿真实验表明当真实模式远离模型集合中的各模型时,新算法比IMM更具鲁棒性。并且当真实模式保持不变时,从全局角度考虑新算法比IMM优越。 Under the principle of Minimum Distance Design, Monte Carlo sampling technique and K-means cluster algorithm were utilized here to design the model set. A problem which may arise from the difference between true mode and model was taken into account, and an improved Interacting Multiple Model algorithm based on Unsecnetd Kalman Filter and model error as proposed. Unscented Kalman Filter was used here for each model to handle non-linear estimation problem. The results of Monte-Carlo simulations show that the new algorithm is more robust than IMM when the true mode is different from any models, and it achieves global superiority in comparison with IMM when the true mode is constant.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第12期3565-3569,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60632050 60472060)
关键词 混合系统 交互式多模型 Unscented卡尔曼滤波器 模型误差 鲁棒性 hybrid system IMM Unscented Kalman Filter model error robustness
  • 相关文献

参考文献8

  • 1LI X R, JILKOV V E Survey of maneuvering target tracking, part Ⅴ: multiple-model methods [J]. IEEE trans on Aerospace and Electronic Systems (S0018-9251), 2005, 43(4): 1255-1321. 被引量:1
  • 2LI X RONG, ZHAO ZHAN LUE, LI XIAO BAI. General model-set design methods for mulitple-model approach [J]. IEEE trans on Automatic control (S0018-9286), 2005, 50(9): 1260-1276. 被引量:1
  • 3LI X RONG, BAR-SHALOM Y. Performance prediction of the interacting multiple model algorithm [J]. IEEE trains on Aerospace and Electronic Systems (S0018-9251), 1993, 39(3): 775-771. 被引量:1
  • 4Sergios Thcodoridis,Konstantinos Koutroumbas.模式识别[M].李晶皎译.北京:电子工业出版社,2004. 被引量:1
  • 5ZHAO ZHAN LUE, LI X RONG The behavior of model probability in multiple model algorithms [C]// Proc. 2005 Int Conf on Informational Fusion. Philadelphia, PA, USA, IEEE, 2005:331-336. 被引量:1
  • 6R vab der Nerwe, A Doucet, N de Freitas, E A Wan. The unscented panicle filter, in Advances in Neural Information Processing Systems (NIPS12). T K Leen, T G Dietrich, V Tresp, Eds. Cambridge, MA, USA: MIT Press, 2000. 被引量:1
  • 7LI X R. A Survey of maneuvering target tracking, part Ⅰ dynamic models [J]. IEEE trans on Aerospace and Electronic Systems (S0018-9251), 2003, 39(4): 1333-1364. 被引量:1
  • 8KIRUBARAJAN T, BAR-SHALOM Y. Kalman filter versus imm estimator: when do we need the latter? [J]. IEEE tram on Aerospace and electronic systems (S0018-9251), 2003, 39(4): 1452-1457. 被引量:1

同被引文献14

  • 1Shalom Y B. Tracking and data association[M]. Orlando:Academic Press, 1988 : 123 - 148. 被引量:1
  • 2Blom H A P, Shalom Y B. The interacting multiple model algorithm for systems with Marko switching coefficients [J]. IEEETrans. onAC,1988,33(8):780-783. 被引量:1
  • 3Mahendra M, La Scala B F. IMM estimator for ground target tracking with variable measurement sampling intervals [C]// Proc. of the 9th International Conference on Information Fusion ,2006 : 1 - 8. 被引量:1
  • 4Zhang M, Knedlik S, Loffeld O. An adaptive road-constrained IMM estimator for ground target tracking in GSM networks[C]// Proc. of the 11th International Conference an In fbrrnatian Fusion ,2008 : 1 - 8. 被引量:1
  • 5Gong S L, Wu H L, Tao C. Tracking maneuvering target on airport surface based on IMM-UKF Algorithm[C] // Proc. of the International Conference on Optoelectronics and Image Processing, 2010 ; 671 - 675. 被引量:1
  • 6Djouadi M S, Morsly Y, Berkani D. A fuzzy IMM-UKF algorithm for highly maneuvering multi-target visual-based tracking[C]// Proc. of the Mediterranean Conference on Control & Automation,2007:1 - 7. 被引量:1
  • 7Shalom Y B, Li X R. Estimation and tracking principles, techniques, and software [M]. Boston London: Artech House,1993. 被引量:1
  • 8Mazor E, Averbuch A, Bar-Shalom Y. Interactive multiple model methods in target tracking: a survey [J].IEEE Trans. on Aerospace and Electronic Systems, 1998,34(1) : 103 - 123. 被引量:1
  • 9Li X R, Vesselin P J. Survey of maneuvering target tracking. Part V: multiple-model methods [J]. IEEE Trans. on Aero space and Electronic Systems, 2005,41(4): 1255 - 1321. 被引量:1
  • 10Qu H Q, Li S H. The model set multiple hypotheses IMM algorithm for maneuvering target tracking[C]// Proc. of the 9th International Conference on Signal Processing, 2008 : 2302 - 2305. 被引量:1

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部