期刊文献+

一种基于遗传算法的FastSLAM 2.0算法 被引量:20

A FastSLAM 2.0 Algorithm Based on Genetic Algorithm
下载PDF
导出
摘要 FastSLAM 2.0算法的重采样过程会带来"粒子耗尽"问题,为了改进算法的性能、提高估计精度,将FastSLAM 2.0算法与遗传算法相结合,提出了一种解决SLAM问题的方法——遗传快速SLAM算法.针对FastSLAM 2.0算法的特点,设计了一种改进的遗传算法来兼顾粒子权值和粒子集的多样性.遗传快速SLAM算法采用unscented粒子滤波器估计机器人的路径,地图估计则采用扩展卡尔曼滤波器.采用SLAM领域的标准数据集"car park dataset"对提出的算法进行了验证,实验结果表明遗传快速SLAM算法在估计精度和一致性方面都具有较好的性能,并且算法的计算复杂度能满足实时性要求. Resampling process often causes the "sample impoverishment" problem in FastSLAM 2.0. In order to improve the algorithm performance and to increase the estimation accuracy, FastSLAM 2.0 is combined with genetic algorithm, and a solution named "Genetic FastSLAM 2.0" is presented for the SLAM problem. Based on the specialty of FastSLAM 2.0, an improved genetic algorithm is designed with attention to both the particle weight and the samples' diversity. Genetic FastSLAM 2.0 estimates the robot path with unscented particle filter (UPF), and the map with extended Kalman filter (EKF). Experiments are carded out with a benchmark dataset named "car park dataset" to evaluate performance of the genetic FastSLAM 2.0, and the results indicate that the genetic FastSLAM 2.0 performs well on both estimation accuracy and consistency, and the computational complexity satisfies the requirements from real-time applications.
作者 周武 赵春霞
出处 《机器人》 EI CSCD 北大核心 2009年第1期25-32,共8页 Robot
关键词 同时定位与地图创建 遗传算法 粒子滤波器 unscented卡尔曼滤波器 扩展卡尔曼滤波器 simultaneous localization and map building (SLAM) genetic algorithm particle filter unscented Kalman filter (UKF) extended Kalman filter (EKF)
  • 相关文献

参考文献16

  • 1Smith R C, Cheesman E On the representation and estimation of spatial uncertainty[J]. The International Journal of Robotics Research, 1986, 5(4): 56-68. 被引量:1
  • 2Durrant-Whyte H E Uncertain geometry in robotics[J]. IEEE Journal of Robotics and Automation, 1988, 4(1): 23-31. 被引量:1
  • 3Smith R C, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[A]. Autonomous Robot Vehicles[M]. New York, USA: Springer-Verlag, 1990. 167-193. 被引量:1
  • 4Thrun S, Burgard W, Fox D. A probabilistic approach to concurrent mapping and localization for mobile robots[J]. Machine Learning, 1998, 31(1-3): 29-53. 被引量:1
  • 5Guivant J E, Nebot E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 242-257. 被引量:1
  • 6Doucet A, de Freitas J, Murphy K, et al. Rao-Blackwellized particle filtering for dynamic Bayesian networks[A]. Proceedings of the Conference on Uncertainty in Artificial Intelligence[C]. San Fransisco, CA, USA: Morgan Kaufmann, 2000. 176-183. 被引量:1
  • 7Montemerlo M, Thrun S, Koller S T D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[A]. Proceedings of the International Conference on Artificial Intelligence[C]. California, CA, USA: IJCAI, 2003. 1151-1156. 被引量:1
  • 8Kim C, Sakthivel R, Chung W K. Unscented FastSLAM: A robust algorithm for the simultaneous localization and mapping problem[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Piscataway, NJ, USA: IEEE, 2007. 2439-2445. 被引量:1
  • 9van der Merwe R, de Freitas N, Doucet A, et al, The Unscented Particle Filter[R]. Portland, OR, USA: Oregon Gradu.ate Institute, 2000. 被引量:1
  • 10Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems[A]. Proceedings of the SPIE (vol.3068) [C]. Bellingham, WA, USA: SPIE, 1997. 182-193. 被引量:1

二级参考文献14

  • 1Gong D W, Xu S F, Sun X Y. Research on fast training algorithm for recurrent neural network [A]. Proceedings of the 2001 IEEE International Symposium on Institute of Electrical and Electronics Engineers, Inc, 2001:446~448. 被引量:1
  • 2Shitomatu. Fuzzy satisfying method for electruc power plant coal put chase using genetic algorithms [J]. European Journal of Operational Research, 2000,126 (1) : 218~230. 被引量:1
  • 3Kortenkamp D,Bonasso R P,Murphy R.AI-based mobile robots:case studies of successful robot systems[M].Cambridge:MIT Press,1998. 被引量:1
  • 4Liu Y,Thrun S.Results for outdoor-SLAM using sparse extended information filters[C]//Proc IEEE Int Conf Robotics and Automation.Taipei:IEEE Press,2003. 被引量:1
  • 5Montemerlo M,Thrun S.Simultaneous localization and mapping with unknown data association using FastSLAM[C]//Proc IEEE Int Conf Robotics and Automation.Taipei:IEEE Press,2003. 被引量:1
  • 6Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 7Moore A W.An introductory tutorial on kd-trees[R].Robotics Institute,Carnegie Mellon University,Pittsburgh,1991. 被引量:1
  • 8Wan E A,Van Der Merwe R.The unscented Kalman filter for nonlinear estimation[C]// Proc of IEEE Symposium 2000,Lake Louise,Alberta,Canada,2000. 被引量:1
  • 9孟祥武,程虎.基于遗忘进化规划的Hopfield网学习算法[J].软件学报,1998,9(2):151-155. 被引量:6
  • 10唐加福,汪定伟,高振,王瑾.面向非线性规划问题的混合式遗传算法[J].自动化学报,2000,26(3):401-404. 被引量:19

共引文献35

同被引文献190

引证文献20

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部