期刊文献+

多特征描述及局部决策融合的人脸识别 被引量:1

Face Recognition Method Based on Multi Features Description and Local Fusion Classification Decision
下载PDF
导出
摘要 提出一种多特征描述及局部决策融合的人脸识别方法。首先利用独立成分分析算法构造全局互补子空间,对待测样本进行粗分类。然后利用三种不同定义的纹理描述算法构造局部互补子空间,获取粗分类难识别样本的后验概率值,最后依据其大小设置等级分数,得到待测样本在局部互补子空间上的精确分类。在ORL、Yale和FERET人脸库上的实验结果表明,本文方法能较好的描述图像特征且具有较高的识别率和较低的时间复杂度,与其他方法对比也表明了本文方法的有效性。 A face recognition method is proposed based on multi features description and local fusion decision. Firstly, we use Independent Component Analysis (ICA) to construct the global complementary subspace to roughly classify the test samples. Then the texture descriptor algorithms under three different definitions are used to construct local complementary subspace to obtain the posterior probability of sample which is difficult to classify by rough classification. Finally, we get the precise classification result of test sample on the local complementary subspace through setting grade scores based on the value of the posterior probability. The experimental results on ORL, Yale and FERET face database show that the proposed method better describes characteristics of the image and has lower time complexity and higher recognition rate. Compared with other methods, it also proves its effectiveness on the face recognition.
出处 《光电工程》 CAS CSCD 北大核心 2016年第9期1-8,共8页 Opto-Electronic Engineering
基金 国家自然科学基金重点资助项目(61432004) 国家自然科学青年基金(61300119) 安徽省自然科学基金项目(1408085MKL16)
关键词 信号处理 多特征描述 决策融合 互补子空间 人脸识别 information processing multi features description fusion decision complementary space face recognition
  • 相关文献

参考文献4

二级参考文献45

  • 1Zhao W, Chellappa R, Phillips P J, et al. Face Recognition : A Literature Survey. ACM Computing Surveys, 2003, 35 (4) : 399 - 458 被引量:1
  • 2Yi J, Kim J, Choi J, et al. Face Recognition Based on ICA Combined with FLD//Proc of the 7th European Conference on Computer Vision. Copenhagen, Denmark, 2002 : 10 - 18 被引量:1
  • 3Bartlett M S, Movellan J R, Sejnowski T J. Face Recognition by Independent Component Analysis. IEEE Trans on Neural Networks, 2002, 13(6) : 1450 -1464 被引量:1
  • 4Lu Juwei, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using LDA-Based Algorithms. IEEE Trans on Neural Networks, 2003, 14(1): 195-200 被引量:1
  • 5Delac K, Grgic M, Grgic S. Statistics in Face Recognition: Analyzing Probability Distributions of PCA, ICA and LDA Performance Results// Proc of the 4th International Symposium on Image and Signal Processing and Analysis. Zagreb, Croatia, 2005:289 -294 被引量:1
  • 6Yang Jian, Yang Jingyu. Why Can LDA Be Performed in PCA Transformed Space? Pattern Recognition, 2003, 36 ( 2 ) : 563 - 566 被引量:1
  • 7Keller J M, Gray M R, Givens J R. A Fuzzy k -Nearest Neighbor Algorithm. IEEE Trans on Systems, Man and Cybernetics, 1985,15 (4) : 580 -585 被引量:1
  • 8Zheng Yujie, Yang Jian, Yang Jingyu, et al. A Reformative Kernel Fisher Discriminant Algorithm and Its Application to Face Recognition. Neurocomputing, 2006, 69(13/14/15) : 1806 - 1810 被引量:1
  • 9Jin Zhong, Yang Jingyu, Hu Zhongshan, et al. Face Recognition Based on the Uncorrelated Discriminant Transformation. Pattern Recognition, 2001, 34(7): 1405- 1416 被引量:1
  • 10He D C and Wang L. Texture unit, texture spectrum, andtexture analysis[J]. IEEE Transactions on Remote Sensing,1990, 28(4): 509-512. 被引量:1

共引文献79

同被引文献4

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部