期刊文献+

基于面部检测和深度神经网络的面部情绪自动识别算法 被引量:7

Automatic facial expression recognition algorithm based on facialdetection and deep neural network
原文传递
导出
摘要 面部情绪识别已成为可见光人脸识别应用的重要部分,是光学模式识别研究中最重要的领域之一。为了进一步实现可见光条件下面部情绪的自动识别,本文结合Viola-Jones、自适应直方图均衡(AHE)、离散小波变换(DWT)和深度卷积神经网络(CNN),提出了一种面部情绪自动识别算法。该算法使用Viola-Jones定位脸部和五官﹐使用自适应直方图均衡增强面部图像,使用DWT完成面部特征提取﹔最后,提取的特征直接用于深度卷积神经网络训练﹐以实现面部情绪自动识别。仿真实验分别在CK+数据库和可见光人脸图像中进行,在CK+数据集上收获了97%的平均准确率,在可见光人脸图像测试中也获得了95%的平均准确率。实验结果表明,针对不同的面部五官和情绪,本文算法能够对可见光面部特征进行准确定位﹐对可见光图像信息进行均衡处理,对情绪类别进行自动识别,并且能够满足同框下多类面部情绪同时识别的需求,有着较高的识别率和鲁棒性。 Facial emotion recognition has become an important part of visible face recognition and one of the most important fields in optical pattern recognition.In order to further realize the automatic recognition of facial emotions under visible light,this paper proposes an automatic recognition algorithm of facial emotions combining viola-Jones adaptive histogram equalization(AHE) and discrete wavelet transform(DWT) and deep convolutional neural network(CNN).The algorithm uses viola-jones to locate the face and facial features,uses adaptive histogram equalization to enhance the facial image,and uses DWT to complete facial feature extraction.Finally,the extracted features are directly used in deep convolutional neural network training to realize automatic facial emotion recognition.The simulation experiment was conducted in CK+ database and visible face images respectively,and the average accuracy rate was 97% in CK+ data set and 95% in visible face image test.The experimental results show that the algorithm can accurately locate visible facial features according to different facial features and emotions.The algorithm presented in this paper can carry out balanced processing of visible image information and automatic recognition of emotion categories,and can meet the need of simultaneous recognition of multiple facial emotions under the same frame,with high recognition rate and robustness.
作者 王春峰 李军 WANG Chun-feng;LI Jun(School of Intelgent Manufacturing,Nanjing Vocational College of Information Technology;College of Elec-tronic Information Engineering Qilu University of technology)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2020年第11期1197-1203,共7页 Journal of Optoelectronics·Laser
基金 江苏省高校自然科学研究面上项目(16KJB470019) 江苏省第五期“333工程”资助项目(BRA2016331)资助项目。
关键词 可见光 情绪识别 人脸检测 卷积神经网络 模式识别 visual expression recognition face detection convolutional neural network pattern recogni-tion
  • 相关文献

参考文献8

二级参考文献58

  • 1黎奎,宋宇,邓建奇,刘民,陈忠林,周激流.基于特征脸和BP神经网络的人脸识别[J].计算机应用研究,2005,22(6):236-237. 被引量:19
  • 2王聃,贾云伟,林福严.人脸识别系统中的特征提取[J].微计算机信息,2005,21(07X):53-55. 被引量:18
  • 3宋红,石峰.视频中的多视角人脸检测与姿态判别[J].计算机辅助设计与图形学学报,2007,19(1):90-95. 被引量:4
  • 4Rowley, H A, Baluja S, Kanade T. Neural network based face deteefion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 1 ) : 23-38. 被引量:1
  • 5Hu, Bin,Wang, Shengjin,Ding, Xiaoqing.Multi Features Combination for Pedestrian Detection[J].Journal of Multimedia.2010(1) 被引量:1
  • 6Maja Pantic, Anton Nijholt, Alex Pentland, et al. Human-Centred Intelligent Human-Computer Interaction (HCI): how far arewe from attaining it [J]. International Journal of Autonomous & Adaptive Communications Systems(S1754-8640), 2008 1(2): 168-187. 被引量:1
  • 7Vinciarelli A, Pantic M, Bourlard H. Social Signal Processing: Survey of an Emerging Domain [J]. Image and Vision Computing(S0262-8856), 2009, 27(12): 1743-1759. 被引量:1
  • 8Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroseience(S0898-929X), 1991, 3(1): 71-86. 被引量:1
  • 9Hafed Z M, Levine M D. Face recognition using the discrete cosine transform [J]. International Journal of Computer Vision(S0920-5691), 2001, 43(3): 167-188. 被引量:1
  • 10Shermina J. Illumination invariant face recognition using discrete cosine transform and principal component analysis [C]// IEEE International Conference on Emerging Trends in Electrical and Computer Technology, Tamil Nadu, March 23-24, 2011: 826-830. 被引量:1

共引文献69

同被引文献92

引证文献7

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部