期刊文献+

特征采样和特征融合的子图像人脸识别方法 被引量:28

Sub-Image Method Based on Feature Sampling and Feature Fusion for Face Recognition
下载PDF
导出
摘要 提出一种基于特征采样和特征融合的子图像人脸识别方法(RS-SpCCA).首先,对子图像进行特征采样;然后,将全局特征和采样后的特征使用CCA进行信息融合,以获取包含全局特征和局部特征的相关特征;最后,在相关特征上构建分量分类器.在该方法中,特征采样是为了构建更多且多样的分量分类器;而引入特征融合思想是为了充分利用图像的全局特征.AR,Yale和ORL这3个数据库上的实验结果表明,基于特征采样和特征融合的子图像方法(RS-SpCCA)优于单纯的信息融合方法(SpCCA)和特征采样方法(Semi-RS). In this paper, a sub-image method based on feature sampling and feature fusion (called as RS_SpCCA) is proposed. RS_SpCCA first performs a random subspace method in sub-images which are partitioned in a deterministic way. Then, the method obtains correlation features by fusing sampled features and global feature extracted by certain feature extraction method and finally, constructs component classifiers on corrleation features. In this method, the purpose of sampling feature is to construct more diverse component classifiers, and the purpose of the fusing feature is to make good use of the global information. The experimental results on AR, Yale and ORL three face image databases show that sub-image method based on feature sampling and feature fusion (RS SpCCA) is superior to both SpCCA and Semi-RS which only use feature sampling or feature fusion.
出处 《软件学报》 EI CSCD 北大核心 2012年第12期3209-3220,共12页 Journal of Software
基金 国家自然科学基金(60973097 61035003) 南京航空航天大学基本科研业务费专项科研项目(ns2010233)
关键词 典型相关分析 人脸识别 信息融合 小样本问题 子图像 特征采样 canonical correlation analysis (CCA) face recognition information fusion small sample size sub-image method feature sampling
  • 相关文献

参考文献1

二级参考文献16

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 3Jolliffe I T.Principal Component Analysis (Second Edition).Berlin:Springer,2002 被引量:1
  • 4Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisher faces:recognition using class specific linear projection.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720 被引量:1
  • 5Hotelling H.Relations between two sets of variates.Biometrika,1936,28(3):321-377 被引量:1
  • 6Sun Q S,Zeng S G,Liu Y,Wang P A,Xia D S.A new method of feature fusion and its application in image recognition.Pattern Recognition,2005,38(12):2437-2448 被引量:1
  • 7Sun Q S,Zeng S G,Wang P A,Xia D S.Feature fusion method based on canonical correlation analysis and handwritten character recognition.In:Proceedings of the 8th International Conference on Control,Automation,Robotics and Vision.Kunming,China:IEEE,2004.1547-1552 被引量:1
  • 8Cevikalp H,Wilke M.Face recognition by using discriminative common vectors.In:Proceedings of the 17th International Conference on Pattern Recognition.2004.326-329 被引量:1
  • 9Liu Jun,Chen S C.Discriminant common vecotors versus neighbourhood components analysis and Laplacian faces:a comparative study in small sample size problem.Image and Vision Computing,2006,24(3):249-262 被引量:1
  • 10Chen SC,Zhu Y L.Subpattern-based principal component analysis.Pattern Recognition,2004,37(1):1081-1083 被引量:1

共引文献24

同被引文献257

引证文献28

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部