期刊文献+

基于深度学习和部分模型的相关性人脸检测 被引量:1

FACE DETECTION WITH CORRELATION BASED ON DEEP LEARNING AND PART MODEL
下载PDF
导出
摘要 针对人脸检测中的部分遮挡和多姿态问题,提出一种基于深度学习的人脸检测算法。首先利用部件检测器检测人脸局部区域,然后将人脸局部区域检测结果输入到深度模型中,学习各局部区域之间的相关性,完成人脸检测。该算法将深度学习理论与基于部分模型的思想相结合,实现人脸检测。实验结果表明,该算法在遮挡、多姿态等情况下具有良好的鲁棒性。 To solve the problems of partial occlusion and multi-pose in face detection,we proposed a deep learning-based face detection algorithm. First we utilised face component detector to detect local areas of face,then inputted the detecting results to deep model. By doing so,the algorithm learns the correlation between each local area to complete face detection. This algorithm combines deep learning theory with part model-based idea to implement the face detection. Experimental results showed that the proposed algorithm had good robustness under the conditions of occlusion and multi-pose.
出处 《计算机应用与软件》 CSCD 2015年第12期123-127,共5页 Computer Applications and Software
基金 国家自然科学基金(61263019) 甘肃省教育厅科研基金项目(2014A-125) 甘肃省青年科技基金计划(1506RJYA111)
关键词 人脸检测 深度学习 部分模型 检测精度 虚警率 Face detection Deep learning Part model Detection precision False alarm rate
  • 相关文献

参考文献22

  • 1Gunasekar S,Ghosh J,Bovik A.Face Detection on Distorted Images Augmented by Perceptual Quality Aware Features[J].IEEE transactions on information forensics and security,2014,9(12):2119-2131. 被引量:1
  • 2Usui H,Tanabe J,Sano T,et al.An evaluation of an energy efficient many-core SoC with parallelized face detection[C]//ASP-DAC.2014:311-316. 被引量:1
  • 3Aliradi R,Bouzera N,Meziane A,et al.Detection of Facial Components Based on SVM Classification and Invariant Feature[C]//Web Intelligence(WI)and Intelligent Agent Technologies(IAT),20131EEE/WIC/ACM International Joint Conferences on.IEEE,2013,3:30-36. 被引量:1
  • 4Lee K M.Component-based face detection and verification[J].Pattern Recognition Letters,2008,29(3):200-214. 被引量:1
  • 5孙志军,薛磊,许阳明,王正.深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810. 被引量:608
  • 6Yoonseop Kang S K S C.Deep Learning to Hash with Multiple Representations[C]//IEEE International Conference on Data Mining.IEEE,2012:930-935. 被引量:1
  • 7吴证,周越,杜春华,袁泉.结合主元成分分析的受限玻耳兹曼机神经网络的降维方法[J].上海交通大学学报,2008,42(4):559-563. 被引量:7
  • 8李晓龙,张兆翔,王蕴红,刘庆杰.深度学习在航拍场景分类中的应用[J].计算机科学与探索,2014,8(3):305-312. 被引量:9
  • 9Ciresan D,Meier U,Schmidhuber J.Multi-column deep neural networks for image classification[C]//Computer Vision and Pattern Recognition(CVPR),2012 IEEE Conference on.IEEE,2012:3642-3649. 被引量:1
  • 10Ichikawa K,Mita T,Hori O.Component-based robust face detection using AdaB oost and decision tree[C]//Automatic Face and Gesture Recognition,2006.FGR 2006.7th International Conference on.IEEE,2006:413-420. 被引量:1

二级参考文献58

  • 1Smolensky P. Parallel distributed processing [C]// Bradford Books. Cambridge: MIT Press, 1986: 194- 281. 被引量:1
  • 2Hinton G E. Training products of experts by minimizingcontrastive divergence [J]. Neural Comput, 2002, 14: 1711-1800. 被引量:1
  • 3Hilton G G, Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507. 被引量:1
  • 4Hinton G E, Salakhutdinov R R. Supporting material on science online [EB/OL]. (2006-02-16) [2007-01-06]. http://www. sciencemag. org/cgi/content/full/ 313/5786/504/DC1. 被引量:1
  • 5Du Chun-hua, Yang Jie, Wu Qiang. Extended fitting methods of active shape model for the location of facial feature points[C] //ICVGIP. Madurai: ISRO, 2006: 610-618. 被引量:1
  • 6Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720. 被引量:1
  • 7Roweis S T, Saul I. K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326. 被引量:1
  • 8Tenenbaum J B, Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323. 被引量:1
  • 9Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [J]. Advanees in Neural Information Processing Systems, 2001, 14: 585-591. 被引量:1
  • 10BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1

共引文献629

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部