期刊文献+

基于相位测量轮廓术的人脸识别 被引量:6

Face Recognition Based on Phase Measuring Profilometry
下载PDF
导出
摘要 为了解决二维人脸识别受环境光干扰,三维人脸识别依赖标定数据的问题,提出了一种基于相位测量轮廓术的人脸识别方法。首先使用相位测量轮廓术获得人脸的相位和反射率数据,相位图中暗含了人脸区域的三维信息,反射率图也排除了环境光的干扰,它们经过规范化后均可以直接使用传统二维识别方法进行人脸识别。在实验中,使用了主成分分析法和最近邻分类器进行人脸识别。实验结果表明,这种方法对人脸识别是有效的,对比二维灰度图和三维深度图有更好的识别效果。 A new method of face recognition, which is based on phase measuring profilometry, is proposed to solve the problems of the ambient light influence in 2-D face recognition and the dependence on calibration data in 3-D face recognition. Firstly, the phase information and reflectivity information of face are obtained based on phase measuring profilometry. The phase image contains 3-D information and the reflectivity image is immune to the ambient light. Then the traditional 2-D face recognition approaches can be used after normalization. In experiments, principal component analysis and nearest neighbor method are used to classify the face. Experiment results show the effectiveness of the proposed method, which achieves higher recognition accuracy than that achieved by using grayscale image and range image.
作者 余祥 刘凯
出处 《光电工程》 CAS CSCD 北大核心 2016年第6期39-43,共5页 Opto-Electronic Engineering
基金 国家自然科学基金(61473198) 四川省科技厅支撑项目(2014GZ0005)
关键词 人脸识别 相位图 反射率图 环境光 标定数据 face recognition phase image reflectivity image ambient light calibration data
  • 相关文献

参考文献5

二级参考文献76

  • 1张启灿,苏显渝,曹益平,李勇,向立群,陈文静.利用频闪结构光测量旋转叶片的三维面形[J].光学学报,2005,25(2):207-211. 被引量:17
  • 2陈高曙,曾庆宁.Eigenface和Fisherface用于人脸识别的性能比较[J].中国科技信息,2006(9):199-201. 被引量:4
  • 3CAO D Y,YANG B R.An improved face recognition algorithm based on SVD[C].Singapore:Proc.of the 2nd International Conference on Computer and Automation Engineering (ICCAE),2010:109-112. 被引量:1
  • 4OTHMAN H,ABOULNASR T.A separable low complexity 2D HMM with application to face recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2003,25(10):1229-1238. 被引量:1
  • 5TUEK M,PENRLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscierce,1991,3(1):71-86. 被引量:1
  • 6BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J.Eigenfaces vs.fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 7JAVIER R S,PABLO N.Eigenspace-based face recognition:A comparative study of different approaches[J].IEEE Trans.on Systems,Man,and Cybernetics-Part C:applications and Reviews,2005,35(3):315-325. 被引量:1
  • 8TRINA R,CHRIS B,TANYA P.3D Face recognition using 3D alignment for PCA[C].Proceedings of the 2006IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06),2006:1392-1398. 被引量:1
  • 9LEI Y Q,CHEN D J,YUAN M L,et al.3D face recognition by surface classification image and PCA[C].Dubai:The second international conference on machine vision(ICMV '09),2009:145-149. 被引量:1
  • 10MATA F J S,BERRETTI S,DEL B A,et al.Using geodesic distances for 2D-3D and 3D-3D face recognition[C].Modena:14th International Conference on Digital Object Identifier,2007:95-100. 被引量:1

共引文献182

同被引文献43

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部