期刊文献+

融入最佳叶节点的改进粒子群算法 被引量:4

An Improved Particle Swarm Optimization Algorithm for Optimal Leaf Nodes
下载PDF
导出
摘要 针对目前传统粒子群算法早熟收敛、多维空间搜索精度不高的问题,提出了一种逐级寻优的算法,在该算法中,基于树状的拓扑结构,同时在速度更新公式中加入最优的叶子节点来平衡粒子全面搜索空间的能力.这样有效地优化了空间搜索精度的问题,又能使群中的粒子向局部最优值、全局最优值和叶子节点的最优值学习,避免早熟收敛.通过几个经典的基准测试函数仿真实验,比较了几种不同算法的效率,测试结果表明提出的新算法取得了很好的效果.将改进的算法应用于图像匹配中,提升了匹配的速度和准确率. The topology of the particle swarm algorithm( PSO) can directly affect the performance ot the algorithm, the neighborhood structure dynamic changes of particles to reach for the purpose of changing particles topology. In order to overcome the problem of the premature and low precision of the standard PSO, we present a tree topological structure using optimal leaf node to improve velocity update formula, while these particles explore the search space more broadly. A PSO algorithm using the tree topology able to solve the problem of space searching accuracy effectively, and can make particles study to local optima, the global optima and the optima of the leaf node used to avoid premature. Through several classic benchmark test function simulation, compares the efficiency of several different algorithms, the experimental results suggest that PSO algorithms using the tree topology are able to provide superior and more consistent performance over some existing PSO algorithrns. The improved algorithm is applied to image matching, and the matching speed and accuracy are improved.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第9期64-69,共6页 Microelectronics & Computer
基金 国家自然科学基金项目(61379459)
关键词 粒子群算法 拓扑结构 叶子节点 图像匹配 particle swarm optimization algorithm tree topological structure leaf node image matching
  • 相关文献

参考文献9

  • 1J Kennedy, R C Eberhart. Particle swarm optimization [C] ff Proc IEEE Int Conf Neural Networks. Perth, Australia.. IEEE, 1995 ; 1942-1948. 被引量:1
  • 2XIA T, WANG X, LIANG S, et al. ANN trained by PSO with adaptive genetic operator and its application [J]. Journal of PLA University of Science and Tech- nology.. Natural Science Edition, 2011, 12 (1) .. 70-74. 被引量:1
  • 3朱蓉,靳雁霞,范卫华.融合优质粒子分布的粒子群优化算法[J].小型微型计算机系统,2015,36(3):576-580. 被引量:15
  • 4Yannis Marinakis. An improved particle swarm opti- mization algorithm for the capacitated location routing problem and for the location routing problem with sto- chastic demands[J]. Applied Soft Computing, Volume 37, December 2015,37(12) : 680-701. 被引量:1
  • 5刘衍民,赵庆祯,牛奔.基于自适应动态邻居和广义学习的改进粒子群算法[J].计算机应用,2010,30(10):2578-2581. 被引量:5
  • 6HUX, EBERHARTR C. Multi-objective optimization using dynamic neighborhood particle swarm optimiza- tion I-C]//Proceedings of IEEE Congress on Evolution Computation. Washington, 1312: IEEE, 2002 :1677-1681. 被引量:1
  • 7Wei Hong Lim, Nor Ashidi Mat Isa. Particle swarm optimization with increasing topology connectivity[J]. Engineering Applications of Artificial Intelligence, 2014,27(1) 180-102. 被引量:1
  • 8Mohammad Reza Bonyadi, Xiang Li, Zbigniew Michalewicz. A hybrid particle swarm with a time-a- daptive topology for constrained optimization [J 1. Swarm and Evolutionary Computation, 2014, 18 (10) .. 22-37. 被引量:1
  • 9鹿艳晶,马苗.基于灰色粒子群优化的快速图像匹配算法[J].计算机工程与应用,2009,45(10):157-159. 被引量:8

二级参考文献24

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2罗钟铉,刘成明.灰度图像匹配的快速算法[J].计算机辅助设计与图形学学报,2005,17(5):966-970. 被引量:72
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 4Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//The 6th International Symposium on Micro Machine and Human Science,Nagoya, 1995:39-43. 被引量:1
  • 5Kennedy J.Eberhart R C.Particle swarm optimization[C]//Proceeding of the IEEE International Conference on Neural Networks, 1995: 1942 - 1948. 被引量:1
  • 6van den Bergh F.An analysis of particle swarm optimizer[D].South Mrica:Department of Computer Science,University of Pretoria, 2002. 被引量:1
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization [ C]// Proceedings of IEEE International Conference on Neural Networks. Washington, DC: IEEE, 1995:1942-1948. 被引量:1
  • 8SUGANTHAN P N. Particle swarm optimizer with neighborhood operator [ C]// Proceedings of IEEE Congress on Evolution Computation. Washington, DC: IEEE, 1999:1958-1962. 被引量:1
  • 9HU X, EBERHART R C. Multiobjective optimization using dynamic neighborhood particle swarm optimization [ C]// Proceedings of IEEE Congress on Evolution Computation. Washington, DC: IEEE, 2002:1677 - 1681. 被引量:1
  • 10LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [ J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295. 被引量:1

共引文献25

同被引文献27

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部