期刊文献+

一种双层可变子群的动态粒子群优化算法 被引量:9

Dynamic Particle Swarm Optimization Algorithm Based on Two-layer Alterable Sub-population
下载PDF
导出
摘要 粒子间信息的共享方式对粒子群优化算法的收敛速度和全局搜索能力有重要的影响.针对全互联、环形拓扑结构,提出基于双层子群的信息共享方式,以收敛率作为子群规模变化的标识,实现子群规模动态变化,协调了算法的全局搜索能力和局部寻优能力.子群排斥机制使子群跳出局部最优解的束缚,提高解的多样性.选取目前比较流行的几种粒子群优化算法,通过五种经典的Benchmark高维函数优化问题进行实验仿真.结果表明基于双层可变子群的动态粒子群优化算法可以有效的避免算法陷入局部最优,在保证收敛速度的同时算法的全局搜索能力和精度有明显的提高. Information sharing method between particles influences the convergence rate and global search capability in particle swarm optimization ( PSO ) algorithm. We have proposed an information sharing method based on two-layer sub-population by studying about all-linked and ring topology model. It can coordinate approach the search capability and local capacity for optimum. And then, it changes the size of sub-population dynamically by calculating the convergence rate. Sub-population exclusive mechanism can increase the diversity of the particles which makes the sub-swarm away from the local best position. We compare the experiment performance of the proposed algorithm and other extended PSO using five benchmark functions for high-dimension solutions. The experiment shows that the proposed algorithm can avoid local best and improve global searching ability and accuracy while having fast convergence speed.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第1期145-150,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60773047)资助
关键词 动态粒子群 拓扑结构 双层子群 子群排斥 最优化问题 dynamic PSO topology structure double-layer sub-population sub-population exclusive mechanism optimization problems
  • 相关文献

参考文献4

二级参考文献34

  • 1温雯,郝志峰.一种基于动态拓扑结构的PSO改进算法[J].计算机工程与应用,2005,41(34):82-85. 被引量:13
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 4王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究[J].计算机科学,2007,34(3):205-207. 被引量:16
  • 5[1]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].In:Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995-10:39~43 被引量:1
  • 6[2]Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].Evolutionary Computation,2002; 6 (1) :58~73 被引量:1
  • 7[3]Kennedy J,Mendes R.Population Structure and Particle Swarm Performance[C].In:Proceedings of the 2002 Congress on Evolutionary Computation,2002; 2:1671 ~ 1676 被引量:1
  • 8[4]Kennedy J.Small Worlds and Mega-Minds:Effects of Neighborhood Topology on Particle Swarm Performance[C].In:Proceedings of the 1999 Congress on Evolutionary Computation,Vol 3,1999-07:1931~1938 被引量:1
  • 9[5]Shi Y,Eberhart R C.Empirical Study of Particle Swarm Optimization[C].In :Proceedings of the 1999 Congress on Evolutionary Computation,Vol 3,1999-07:1945~1950 被引量:1
  • 10[6]Xiaodong Li.Adaptively Choosing Neighbourhood Bests Using pecies in a Particle Swarm Optimizer for Multimodal Function Optimization[C].In:proceedings of Genetic and Evolutionary Computation Conference,2004-06:105~116 被引量:1

共引文献74

同被引文献86

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部