期刊文献+

基于KRTG的动态拓扑结构的粒子群算法研究 被引量:1

Particle Swarm Algorithm Based on the Dynamic Topology Structure of KRTG
下载PDF
导出
摘要 标准的粒子群优化算法作为一种随机全局搜索算法,因其在种群中传播速度过快,易陷入局部最优解。基于KRTG的动态拓扑结构的粒子群算法(KRTG-PSO),从粒子间的拓扑结构出发,动态地调整种群的拓扑结构,增加种群的多样性,使算法收敛于全局最优解。通过测试函数以及与其他算法的比较,并通过实验表明,该算法在收敛速度与数据精度上收到了满意的效果。 The standard particle swarm optimization algorithm as a random global search algorithm, because of its rapid propagation in populations, easily into the local optimal solution. Based on the dynamic topology structure of KRTG particle swarm optimization (PSO), KRTG- between particles from the topological structures, dynamically adjust the topological structure of population, can increase the diversity of population, the method converge to the global optimal solution. Through the test function and the comparison with other algorithm, experimental results show that the algorithm convergence picked up and the effect is satisfied.
出处 《计算机与数字工程》 2010年第2期25-27,81,共4页 Computer & Digital Engineering
关键词 动态 拓扑结构 粒子群 KTPG 适应度 dynamic, topology structure, particle swarm, KRTG, fitness
  • 相关文献

参考文献4

二级参考文献28

  • 1潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 2Yi Yang,Lei Zhang,Jogesh K Muppala,et al.Bandwidth - delay constrained routing algorithms[J].Computer Networks,2003,42 (4):503-520. 被引量:1
  • 3Waxman B M.Routing of multipoint connections[J].IEEE Journal of Selected Areas in Communication,1988,6(9):1617-1622. 被引量:1
  • 4Christine Nickel.Random dot product graphs: A model for social networks[D].PhD Thesis,The Johns Hopkins University,2007. 被引量:1
  • 5Wang Xingwei,Gao Nan,An Guangyong, et al.An evolutionarysimplex-algorithm-based QoS multicast routing algorithm in NGI[J].International Conference on Hybrid Information Technology,2006,11(1):66-70. 被引量:1
  • 6Sergios Theodoridis,Konstantinos Koutroumbas.模式识别[M].李晶皎,王爱侠,张广渊,等译.3版.北京:电子工业出版社,2006. 被引量:2
  • 7Khan S S,Ahmad A.Cluster center initialization algorithm for Kmeans clustering [J]. Pattern Recognition Letters, 2004,25 (11): 1293-1302. 被引量:1
  • 8Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems.Oxford University Press,New York,1999 被引量:1
  • 9Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of the IEEE International Conference on Neural Networks,1995.1942~1948 被引量:1
  • 10Hu X,Eberhart R C,Shi Y H.Engineering Optimization with Particle Swarm.In:Proceedings of the IEEE Swarm Intelligence Symposium,Indianapolis,Indiana,USA,2003.53~57 被引量:1

共引文献27

同被引文献27

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:158
  • 2刘宇,覃征,卢江,史哲文.多模态粒子群集成神经网络[J].计算机研究与发展,2005,42(9):1519-1526. 被引量:4
  • 3Kennedy J,Eberhart R. Particle swarm optimization[A].Perth,Australia,1995.1942-1948. 被引量:1
  • 4Eberhart R,Kennedy J. A new optimizer using particle swarm theory[A].Nagoya,Japan,1995.39-43. 被引量:1
  • 5Shi Y,Eberhart R. A modified particle swarm optimizer[A].1998.69-73. 被引量:1
  • 6Clerc M. The swarm and the Queen:Towards a deterministic and adaptive particle swarm optimization[A].1999.1951-1957. 被引量:1
  • 7P N Suganthan. Particle swarm optimizer with neighborhood operator[A].Piscataway,NJ:IEEE Service Center,1999.1958-1962. 被引量:1
  • 8J.Kennedy,R.Mendes. Neighborhood Topologies in Fully-Informed and Best-of-Neighborhood Particle Swarms[A].2003.45-50. 被引量:1
  • 9Arvind Mohais,Rui Mendes,Christopher Ward,Christian Postoff. Neighborhood Re-structuring in Particle Swarm Optimization[A].2005.776-785. 被引量:1
  • 10Zhang Xueping,Wang Jiayao,Zhang Dexian,Fang Zhongshan. An IACO and HPSO method for spatial clustering with obstacles constraints[A].2008.848-856. 被引量:1

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部