期刊文献+

基于改进云粒子群优化的模糊神经网络在甲醇合成转化率软测量中的应用 被引量:1

Fuzzy Neural Network Based on Improved Cloud Particle Swarm Optimization and Its Application in the Soft Sensing of Methanol Synthesis Tower Conversion
下载PDF
导出
摘要 针对基本PSO算法早熟、搜索精度不高与易陷入局部最优的缺点,结合云滴的随机性、稳定倾向性,提出了一种改进粒子群优化算法(ICPSO)。将改进算法用于模糊神经网络的参数优化,并应用于甲醇单程转化率建模中。仿真实验结果表明:该模型具有较高的精度和较好的泛化能力,能够实现甲醇转化率的实时监测。 By integrating the randomness and stable tendency of cloud droplets, this paper proposes an improved particle swarm algorithm (ICPSO) so as to overcome the premature convergence and easily plunging into the local optimization of the PSO algorithm. And then, the improved algorithm is utilized to optimize the parameters of the fuzzy neural network, which is further applied to the modeling of methanol conversion. The experiment results show that the proposed model has higher precision and better generalization ability, and can realize real-time monitoring of the methanol conversion.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期697-701,共5页 Journal of East China University of Science and Technology
基金 中央高校基本科研业务费专项资金 国家"863"项目(2009AA04Z141) 上海市重点学科项目(B504)
关键词 粒子群优化算法 云模型 模糊神经网络 甲醇 particle swarm optimization(PSO) cloud model fuzzy neural network methanol
  • 相关文献

参考文献8

二级参考文献79

共引文献198

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部