期刊文献+

基于吸收和再生变异的粒子群优化算法

Particle Swarm Optimization Based on Absorption and Mutation
下载PDF
导出
摘要 标准粒子群算法随着迭代次数的增加,整个粒子种群的多样性呈下降趋势,种群很快在当前最优位置的吸引下容易陷入局部最优而无法逃脱。因此,如何增加种群多样性,使粒子逃脱局部最优,成为增强算法全局寻优能力的关键。为了克服粒子群算法早熟收敛的缺点和增加其粒子多样性,通过引入"吸收"、"再生变异"算子,设计了一种新的粒子群优化算法,通过对常用基准函数的数值试验,证明了新算法不仅能有效地避免早熟收敛,而且具有更好的收敛效果。 A disadvantage of the standard particle swarm algorithm is that with the increase of iteration times, the diversity of the whole particle population has a descending trend, which makes population trap easily into the local optimum and can not escape owing to the current optimal position attraction. Therefore, how to increase the diversity of population in order to make particle escape local optimum becomes the key for the enhanced algorithm to acquire global optimization ability. In order to overcome the shortcomings of the standard particle swarm algorithm premature convergence and increase the diversity, this paper designed a new particle swarm optimization algorithm by introdu- cing three operators called "absorption", "regeneration and variation". The numerical test results using some com- mon reference functions prove that the new algorithm not only can avoid effectively premature convergence but has better convergence effect.
出处 《计算机仿真》 CSCD 北大核心 2013年第6期308-311,365,共5页 Computer Simulation
基金 四川省教育厅青年基金项目(11ZB058)
关键词 粒子群算法 早熟收敛 多样性 吸收 再生变异 Particle swarm Premature convergence Diversity Absorption Mutation
  • 相关文献

参考文献3

二级参考文献35

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:158
  • 2高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 3王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 4J. Kermedy,R. Eberhart. Particle Swarm Optimization[C]. Proc. IEEE International Conf. on Neural Networks. Perth. Australia, 1995:1 943-1 948. 被引量:1
  • 5Eberhart R C, Kennedy J. A New Optimizer Using Particles Warm Theory[A]. Proc. of the Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya, 1955:39-43. 被引量:1
  • 6Eberhart R. C,Shi Y. Particle Swarm Optimizer:Developments, Applications and Resources[C]. Proceeding of IEEE Congress on Evolutionary Computation, 2001: 81-86. 被引量:1
  • 7Shi Y H, Eberhart R C. A Modified Particle Swarm Optimizer[A]. IEEE World Congress on Computational Intelligence[C]. Anchorage, 1998 : 69-73. 被引量:1
  • 8杨亚平,曾建潮.微粒群与单纯形相结合的混合优化[C]//2005年中国模糊逻辑与计算智能联合学术会议论文集.2005,804—807. 被引量:4
  • 9Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems.Oxford University Press,New York,1999 被引量:1
  • 10Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of the IEEE International Conference on Neural Networks,1995.1942~1948 被引量:1

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部