期刊文献+

一种基于二次变异策略的改进型遗传算法 被引量:2

Improved genetic algorithm based on double mutation operators
下载PDF
导出
摘要 通过对基本遗传算法采用单点位变异和倒置变异两次变异操作进行改进,并把该算法应用到TSP问题的求解中。仿真结果表明,改进后的算法提高了种群的多样性,增强了算法的局部搜索能力,从而使最终找到的解比基本遗传算法更优。另外,二次变异的改进遗传算法对种群规模的敏感性比非二次变异的基本遗传算法更强,相同条件下当增大种群规模时,二次变异的改进算法能得到更优的解。 Simple genetic algorithm is improved by using single point mutation and inversion mutation operators. The algorithm is applied to Traveling Salesman Problem(TSP). Simulation results show the diversity of population can be also improved by uising the modified algorithm. The local search capacity of the algorithm is effectively improved. The algo-rithm can find better solution than the simple genetic algorithm. In addition, the improved genetic algorithm has higher sensitivity for population size. Under the same conditions, when the population size increases, the improved algorithm can get a better solution.
出处 《计算机工程与应用》 CSCD 2014年第13期62-65,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61164005) 教育部春晖计划项目(No.Z2012101) 青海师范大学青年创新项目(No.12948)
关键词 遗传算法 二次变异 旅行商问题(TSP) 种群多样性 搜索能力 genetic algorithm double mutation Traveling Salesman Problem (TSP) diversity of the population searchcapacity
  • 相关文献

参考文献17

  • 1Holland J H.Adaptation in natural and artificial systems: an introductory analysis with applications to biology,con- trol, and artificial intelligence[M].2nd ed.Cambridge:MIT Press, 1992. 被引量:1
  • 2Yang Xiaohua,Yang Zhifeng, Yin Xinan,et al.Chaos gray- coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(8) : 1676-1688. 被引量:1
  • 3梁旭,王佳,黄明.解决大规模生产调度问题的一种新编码方法[J].计算机集成制造系统,2008,14(10):1974-1977. 被引量:11
  • 4He Yaohua, Hui Chiwai.A binary coding genetic algorithm for multi-purpose process scheduling: a case study[J]. Chemical Engineering Science, 2010,65 (16) : 4816-4828. 被引量:1
  • 5Tang Kezong, Sun Tingkai, Yang Jingyu.An improved genetic algorithm based on a novel selection strategy for nonlinear programming problems[J].Computers and Chemical Engineering, 2011,35 (4) : 615-621. 被引量:1
  • 6Boris P L,Jessica S C.A deterministic annular crossover genetic algorithm optimisation for the unit commitment problem[J].Expert Systems with Applications, 2011, 38 (6) :6523-6529. 被引量:1
  • 7Wang Lei, Tang Dunbing.An improved adaptive genetic algorithm based on hormone modulation mechanism for Job-Shop scheduling problem[J].Expert Systems with Appli- cations, 2011,38 (6) : 7243-7250. 被引量:1
  • 8巩敦卫,郝国生,严玉若.交互式遗传算法基于用户认知不确定性的定向变异[J].控制与决策,2010,25(1):74-78. 被引量:11
  • 9Murat A, Novruz A.Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms[J].Expert Systems with Applications, 2011,38 (3) : 1313-1320. 被引量:1
  • 10闫利军,李宗斌,杨晓春.基于混合优化算法的遗传算法参数设定研究[J].系统工程与电子技术,2007,29(10):1753-1756. 被引量:8

二级参考文献91

共引文献184

同被引文献22

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部