期刊文献+

基于高聚集性无标度网络模型的微粒群算法 被引量:3

Particle Swarm Optimization with Highly-Clustered Scale-Free Network Model
下载PDF
导出
摘要 受无标度网络结构特性的启发,将BA模型的"择优连接"机制进行扩展,引入微粒群群体组织方式的构造过程,提出基于高聚集性的无标度网络模型的微粒群算法。算法初期微粒被随机分布在环形结构中,随着搜索的进行不断增加新的微粒,并依据节点度和节点间的距离增加新的连接,最终形成具有高聚集性的无标度网络模型。这样,群体中多数微粒进行局部范围的搜索,而少量微粒按照全局模式搜索,两种方式相互制衡。仿真实验表明,改进后的算法能获得更好的收敛精度和进化速度。 Enlightened by the properties of scale-free network model,"preferential attachment" mechanism of the BA model is extended and introduced into particle swarm optimization,and a novel particle swarm optimization with highly-clustered scale-free network model(PSO-HCSF) is proposed.At the early stage of the algorithm,particles were randomly distributed in a ring,new particles are continuously added into the population with searching,and based on the node degree and the distance between nodes new connections are produced,and a high aggregation degree of scale-free network model are formed in the end.In this way,the majority of particles search in local scope and a small amount of particles search with the overall pattern,two ways check and balance.Experimental simulations show that the new method obtains better evolution speed and convergence performance.
出处 《复杂系统与复杂性科学》 EI CSCD 2010年第1期82-87,共6页 Complex Systems and Complexity Science
关键词 微粒群算法 无标度网络模型 择优连接 高聚集性 particle swarm optimization scale-free network model preferential attachment high cluster
  • 相关文献

参考文献10

二级参考文献40

  • 1温雯,郝志峰.一种基于动态拓扑结构的PSO改进算法[J].计算机工程与应用,2005,41(34):82-85. 被引量:12
  • 2覃森,戴冠中,王林.节点数固定的复杂网络模型初探[J].复杂系统与复杂性科学,2005,2(2):7-12. 被引量:8
  • 3刘强,方锦清,李永,梁勇.探索小世界特性产生的一种新方法[J].复杂系统与复杂性科学,2005,2(2):13-19. 被引量:11
  • 4Eberhart R C, Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science.IEEE Services Center,1995:39--43. 被引量:1
  • 5Kennedy J, Eberhart R C.Particle Swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks.IEEE Service Center, 1995:1942-1948. 被引量:1
  • 6Kennedy J.Small worlds and Mega-Minds:Effects of neighborhood topology on particle swarm performance[C]//Proceedings of the 1999 Congress on Evolutionary Computation, 1999,3 : 1931-1938. 被引量:1
  • 7De Oca M A M,Stutzle T,Birattari M,et al.Frankenstein's PSO:A composite particle swarm optimization algorithm,TR/IRIDIA/2007- 006[R].IRIDIA,Universit Libre de Bruxelles,Brussels Belgium,2007. 被引量:1
  • 8Clerc M,Kennedy J.The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J].Evolutionary Computation, 2002,6( 1 ) : 58-73. 被引量:1
  • 9Shi Y H,Eberhart R.A modified particle swarm optimizer[C]//Proceedings of the 1998 IEEE International Conference on Evolutionary Computation.Piscataway:IEEE Press,1998:69-73. 被引量:1
  • 10Shi Y H,Eberhart R.Parameter selection in particle swarm optimization[C]//Proceedings of the 1998 Annual Conference on Evolutionary Computation, 1998:591-600. 被引量:1

共引文献28

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部