期刊文献+

基于灰色关联分析和人工蜂群算法的图像匹配方法 被引量:6

Fast Image Matching Approach Based on Grey Relational Analysis and Artificial Bee Colony Algorithm
下载PDF
导出
摘要 为提高图像匹配速度和精度,利用灰色关联分析理论和人工蜂群算法,提出一种抗噪性较好的快速图像匹配方法,简称GABC法。该方法将模板图像和当前搜索位置子图的直方图信息作为参考序列和比较序列,设计基于灰色关联度的适应度函数;然后对人工蜂群算法中的初始种群个体的分布进行优化,以提高收敛速度;接着,人工蜂群通过个体分工与信息共享,实现群体智能的高效并行寻优能力,快速逼近最佳匹配位置。实验显示,该方法在保证了一定匹配精度的情况下,明显提高了匹配速度和抗噪性。 To increase the speed and accuracy of image matching,suggest a new method,which is based on grey relational theory and artificial bee colony algorithm(GABC).In the method,a referential sequence and a comparative sequence are respectively constructed by the histogram information of the template image and the current searching subimage.Then,based on the grey relational degree between the two sequences,a fitness function of artificial bee colony algorithm is designed.Secondly,optimize individuals' distribution of the initial bee swarm to improve the convergence speed.The bees currently approach to the best matching position through labor division and information sharing of swarm intelligence.The experimental results indicate that the proposed method not only provides with precise positions,but also obviously increases the matching speed and noise immunity.
作者 何志明 马苗
出处 《计算机技术与发展》 2010年第10期78-81,共4页 Computer Technology and Development
基金 国家自然科学基金(60803088) 中央高校基本科研业务费专项资金重点项目(GK200901006) 陕西省自然科学基金(2007D07)
关键词 图像匹配 人工蜂群算法 灰色关联分析 适应度函数 image matching artificial bee colony algorithm grey relational analysis fitness function
  • 相关文献

参考文献18

  • 1章毓晋编著..图像工程 第2版[M].北京:清华大学出版社,2007:1364.
  • 2翟俊海,赵文秀,王熙照.图像特征提取研究[J].河北大学学报(自然科学版),2009,29(1):106-112. 被引量:73
  • 3陶晓勋..基于特征的快速抗旋转图像匹配方法研究[D].河海大学,2007:
  • 4You J,Bhattacharya P A.Wavelet-based coarse-to-fine image matching scheme in a parallel virtual machine environment[J].IEEE Transaction on Image Processing,2000,9(9):1547-1559. 被引量:1
  • 5罗钟铉,刘成明.灰度图像匹配的快速算法[J].计算机辅助设计与图形学学报,2005,17(5):966-970. 被引量:72
  • 6王宏力,贾万波.图像匹配算法研究综述[C] //全国第19届计算机技术与应用(CACIS)学术会议论文集(上册).合肥:中国科学技术大学出版社,2008:418-422. 被引量:4
  • 7Zeng Zhanggui,Yan Hong.Region matching and optimal matching pair theorem[C] //In:Computer Graphics International 2001.Australia:NSW,2001:232-239. 被引量:1
  • 8Kawanishi T,Kurozumi T,Takagi S.A fast template matching algorithm with adaptive skipping using inner-subtemplates'distance[J].Proceedings of ICPR,2004(3):654-657. 被引量:1
  • 9黄力明.混沌微粒群优化算法在图像匹配中的应用[J].计算机工程与应用,2009,45(32):168-170. 被引量:2
  • 10鹿艳晶,马苗.基于灰色粒子群优化的快速图像匹配算法[J].计算机工程与应用,2009,45(10):157-159. 被引量:8

二级参考文献160

共引文献266

同被引文献48

  • 1王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196. 被引量:40
  • 2吴斌,钱存华,崔志勇.具有社会认知策略的人工蜂群算法研究[C].第24届中国控制与决策会议论文集.2012:2681-2684. 被引量:3
  • 3Karaboga D. An idea based on honeybee swarm for nu- merical optimization [ R ]. Turkey: Erciyes University, 2005. 被引量:1
  • 4Karaboga D, Akay B. A comparative study of artificial bee colony algorithm [ J ]. Applied mathematics and computation,2009,214( 1 ) :108-132. 被引量:1
  • 5Ye Zhiwei, Zeng Mengdi. Image enhancement based on artificial bee colony algorithm and fuzzy set [ C ]//Proc of international symposium on information engineering and electronic commerce. Hubei, China: [ s. n. ] ,2011 : 127-130. 被引量:1
  • 6Omakar S N, Senthilnath J, Khandelwal R, et al. Artifi- cial bee colony for multi-objective design optimization of composite structures[ J ]. Applied soft computing, 2011,11 ( 1 ) :489-499. 被引量:1
  • 7Wang Hsin-Chih,Wang Yucheng. Performance compar- isons of genetic algorithm and artificial bee colony algo- rithm applications for localization in wireless sensor net- works[ C]//Proc of 2010 international conference on system science and engineering. Wuhan, China: [ s. n. ], 2010:469-474. 被引量:1
  • 8Tsai P W, Pan J S, Liao B Y. Enhanced artificial bee col- ony optimization [ J ]. International journal of innovative computing, information and control, 2009 ( 12 ) : 5081 - 5092. 被引量:1
  • 9Gao Weifeng, Liu Sanyang, Huang Lingling. A novel ar- tificial bee colony algorithm based on modified search e- quation and orthogonal learning [ J ]. IEEE journals & magazines ,2013,43 ( 3 ) : 1011 - 1024. 被引量:1
  • 10Karaboga D, Gorkemli B. A quick artificial bee colony - qABC- algorithm for optimization problems [ C ]//Proc of 2012 international symposium on innovations in intel- ligent systems and applications. [ s. 1. ] : [ s. n. ] ,2012 : 1 -4. 被引量:1

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部