期刊文献+

基于多目标蜂群优化的阈值图像分割算法 被引量:3

Image thresholding segmentation based on multi-objective artificial bee colony optimization
下载PDF
导出
摘要 为把图像的目标与背景准确地分割开来,将多目标人工蜂群算法引入到多阈值图像分割,提出了一种新的阈值图像分割算法。该算法首先将阈值看做人工蜂群算法中的蜜源,利用类间方差和最大熵原理两个准则作为多目标人工蜂群算法的适应度函数,然后在引领蜂和跟随蜂阶段引入精英解来参与蜜源位置更新,使得算法更有效地逼近最佳阈值,最后采用类间差异和类内差异的加权比值来选取最优解。实验结果表明,该算法能够取得较好的分割结果。 In order to accurately segment the targets and background in images,a multi-objective artificial bee colony algorithm is introduced into the multi-thresholding image segmentation problem and then a novel image segmentation algorithm is proposed in this paper. Firstly,the thresholds are regarded as the honey source in the artificial bee colony algorithm,and the interclass variance and entropy are adopted as the fitness functions of the multi-objective artificial bee colony algorithm. Then,the elite solution is introduced into the employed bee and onlooker bee phase to participate in the position updating,which makes the algorithm approximate the optimal thresholds more effectively. Finally,the weighted ratio of between-cluster variation and intra-cluster variation is adopted to select an optimal solution. Experimental results show that the algorithm can obtain good segmentation results.
作者 解敏 XIE Min(School of Telecommunications and Information Engineering,Xi'an University of Posts and Telecommunications,Xi? an 710061,)
出处 《电视技术》 2018年第3期6-14,共9页 Video Engineering
基金 国家自然科学基金资助项目(61571361,61102095) 陕西省科技计划资助项目(2014KJXX-72)
关键词 多阈值分割 多目标优化 人工蜂群算法 Multi-threshold Segmentatioo multi-objective optimization Artificial bee colony optimization
  • 相关文献

参考文献9

二级参考文献87

  • 1汪东,吕绪良,许卫东,潘玉龙,林伟.基于灰度直方图分析技术的伪装应用模型[J].解放军理工大学学报(自然科学版),2004,5(3):74-77. 被引量:18
  • 2彭勇,施宁,林浒.佳点集遗传算法及其在PID控制中的应用[J].计算机应用研究,2009,26(2):524-526. 被引量:5
  • 3Zucker S W. Region growing.. Childhood and adolescence[J]. Computer Graphics Image Processing, 1976, 5.382-399. 被引量:1
  • 4Wang Jianan, Kong JurL Aregionbased SRG algorithm for color image segmentation [C]//Proceedings of the IEEE Sixth International Conference on Machine Learning and Cybernetics. New York, USA: IEEEComputer Society, 2007.1544-1545. 被引量:1
  • 5Senthilkumar B, Umamaheswari G, Karthik J. A novel region growing segmentation algorithm for the de- tection of breast cancer [C]//Computational Intelli- gence and Computing Research(ICCIC), 2010 IEEE International Conference on 2010:2-3. 被引量:1
  • 6Qin A K, Clausi D A. Multivariate Image Segmentation Using Semantic Region Growing With Adaptive Edge Penalty Image Processing[J]. IEEE Transactions on 2010,19(8) .2167- 2169. 被引量:1
  • 7刘浩,董超俊.融合边缘检测与区域生长的交通图像分割方法[J].交通运输工程与信息学报,2007,5(3):116-120. 被引量:2
  • 8章毓晋.图像处理和分析(上册)[M].北京:清华大学出版社,1999.101-106. 被引量:10
  • 9Ferma A MufiL. Teklao A Murat, Mehrotra Rajlv. Robust color histogram descriptors for video segment retrival and identification[J]. IEEE Transactions on Image processing,2OO2,11(5) : 497-507. 被引量:1
  • 10Castleman Kenneth R. Digital Image Pracessing[M]. Beijing:Prentice-Hall International,Inc 1998. 被引量:1

共引文献87

同被引文献22

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部