期刊文献+

基于置信度的深度图融合 被引量:2

Fusion of Depth Maps with Confidence of Points
下载PDF
导出
摘要 由于匹配信息弱或噪声影响,深度计算精度难以保证,故深度图融合是多目立体视觉3维重建中的关键部分。为此,提出一种基于置信度的抗噪融合算法。该方法首先对每幅深度图进行修正,利用一致性检测剔除大多数错误点并填补某些空洞。其次,通过保留那些在自身邻域内具有最高置信度的3维点以删除冗余。最后,将深度图反投影到3维空间,采用迭代最小二乘法进一步优化3维点并剔除离群点。通过在标准测试数据集上与其他算法比较,验证了该方法的有效性。 Due to the weakness of match information and influence of noise, the calculation precision of depth cannot be guaranteed. Therefore the fusion of multiple depth maps is a typical technique for multi-view stereo ( MVS ) reconstruction. An antinoise fusion method that took advantage of the confidence of 3D points was introduced. This method performed a refinement process on every depth map to enforce consistency over its neighbors, which could remove most errors and fill many holes simultaneously. After: refinement, it deleted redundancies of every point by retaining the point that its confidence was maximal in its neighbors. Finally, it obtained a point cloud by merging all depth maps and used an iterative least square algorithm to further eliminate the noise points. The quality perform- ance of the proposed method was evaluated on several data sets and compared with other algorithm.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第4期101-106,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61571313) 四川省科技厅资助项目(2014HH0048)
关键词 多目立体视觉 3维重建 深度图融合 置信度 迭代最小二乘法 multiple view stereo 3D reconstruction fusion of depth maps confidence iterative least square algorithm
  • 相关文献

参考文献16

  • 1Seitz S M,Curless B,Diebel J,et al. A comparison and e- valuation of muhi-view stereo reconstruction algorithms [ C]//Proceedings of 2006 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. New York : IEEE Press ,2006,1:519 - 528. 被引量:1
  • 2George V,Carlos H E,Torr P H S,et al. Multiview stereo via volumetric graph-cuts and occlusion robust photo-con- sistency[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2007,29 (12) :2241 - 2246. 被引量:1
  • 3Furnkawa Y, Ponce J. Accurate, dense, and robust multiv- iew stereopsis[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(8) :1362 - 1376. 被引量:1
  • 4Cremers D,Kolev K. Muhiview stereo and silhouette con- sistency via convex functionals over convex domains [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence,2011,33 (6) : 1161 - 1174. 被引量:1
  • 5Shen Shuhan. Accurate multiple view 3D reconstruction u- sing patch-based stereo for large-scale scenes [ J]. IEEE Transactions on Image Processing, 2013,22 ( 5 ) : 1901 - 1914. 被引量:1
  • 6Liu Yiguang,Yi Shoulin,Wu Pengfei,et al. A novel 3D reconstruction algorithm for large-scale scenes [ J ]. Journal of Sichuan University: Engineering Science Edition,2015,47(6):91-96. 被引量:1
  • 7刘怡光,易守林,吴鹏飞,崔鹏.一种新的大场景3维重建算法[J].四川大学学报(工程科学版),2015,47(6):91-96. 被引量:7
  • 8Goesele M,Curless B,Seitz S M. Muhi-view stereo revisi- ted[ C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York : IEEE Press ,2006,2 ( 2 ) :2402 - 2409. 被引量:1
  • 9Bradley D, Boubekeur T, Heidrich W. Accurate multi- view reconstruction using robust binocular stereo and sur- face meshing[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE ,2008 : 1 - 8. 被引量:1
  • 10Bailer C, Finckh M, Lenseh H. Scale robust multi view stereo[C]//Proceedings of the 12th European Conference on Computer Vision. Volume Part III. Firenze: Springer- Vedag,2012:398 -411. 被引量:1

二级参考文献17

  • 1Seitz S M,Curless B, Diebel J,et al. A comparison and e- valuation of multi-view stereo reconstruction algorithms [ C]//Proceedings of 2006 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. New York : IEEE,2006,1:519 - 528. 被引量:1
  • 2Tabb A. Shape from silhouette probability maps: Recon- struction of thin objects in the presence of silhouette ex- traction and calibration error[ C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recog- nition. Portland : IEEE ,2013 : 161 - 168. 被引量:1
  • 3Cremers D,Kolev K. Muhiview stereo and silhouette con- sistency via convex functionals over convex domains[ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence ,2011,33 (6) : 1161 - 1174. 被引量:1
  • 4Goesele M, Snavely N, Curless B, et al. Multi-view stereo for community photo collections[ C]//Proceedings of IEEE l lth International Conference on Computer Vision. Rio de Janeiro : IEEE, 2007 : 1 - 8. 被引量:1
  • 5Furukawa Y, Ponce J. Accurate, dense, and robust muhiv- Jew stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32 ( 8 ) : 1362 - 1376. 被引量:1
  • 6Bailer C, Finckh M, Lensch H. Scale robust multi view stereo[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer-Verlag, 2012 : 398 - 411. 被引量:1
  • 7Shen Shuhan. Accurate multiple view 3D reconstruction u- sing patch-based stereo for large-scale scenes [ j ]. IEEE Transactions on Image Processing, 2013,22 ( 5 ) : 1901 - 1914. 被引量:1
  • 8Wei J,Resch B, Lenseh H. Multi-view depth map estima- tion with cross-view eonsisteney IC]//Proeecdings of the British Machine Vision Conferenee. Nottingham: BMVA Press ,2014. 被引量:1
  • 9Shen Shuhan,Hu Zhanyi. How to select good neighboring images in depth-map merging based 3D modeling [ J]. IEEE Transactions on Image Processing,2014,23 ( 1 ) :308 -318. 被引量:1
  • 10Zheng E,Dunn E,Jojie V,et al. Patchmateh based joint view selection and depth-map estimation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pat- tern Recognition. Columbus : IEEE,2014 : 1510 - 1517. 被引量:1

共引文献6

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部