期刊文献+

基于可信度的深度图融合三维重建方法

Confidence-Based Depth Maps Fusion for 3D Reconstruction
下载PDF
导出
摘要 可信度计算是深度图融合三维重建中非常重要的一步,直接关系到重建结果的完整性和精度。提出一种充分考虑图像尺度、三维点的几何特性、三维点与摄像机之间的关系以及图像匹配程度等因素的可信度计算方法,可信度计算更精确。实验结果表明,该方法能提高深度图融合三维重建结果的完整性和精度。 Confidence computing is a very important step in depth map fusion based three-dimensional reconstruction which is directly related to the completeness and accuracy of the reconstruction results. Proposes a method that is fully considered image scale, geometry orientation, the angle between the point and cameras, image match cost and other factors, the confidence calculated is more accurate. Experimental re-sults show that the method can improve the depth map fusion based three-dimensional reconstruction results in the completeness and ac-curacy.
作者 易守林
出处 《现代计算机》 2016年第3期38-40,共3页 Modern Computer
基金 四川省科技创新苗子工程资助项目(No.2015046 No.2015095)
关键词 可信度 深度图 融合 三维重建 Confidence Depth Map Fusion 3D Reconstruction
  • 相关文献

参考文献8

  • 1Seitz S M, Curless B, Diebel J, et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms[C],2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2006, 1: 519-528. 被引量:1
  • 2Merrell P, Akbarzadeh A, Wang L, et al. Real-Time Visibility-Based Fusion of Depth Maps[C]. In IEEE International Conference on Computer Vision (ICCV), 2007 :pages 1 - 8, 2007. 被引量:1
  • 3Fuhrmann S, Goesele M. Fusion of depth maps with multiple scales[C].ACM Transactions on Graphics(TOG). ACM, 2011, 30(6): 148. 被引量:1
  • 4Kolev K, Tanskanen P, Speciale P, et al. Turning Mobile Phones into 3D Scanners[C],2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2014: 3946-3953. 被引量:1
  • 5刘怡光,易守林,吴鹏飞,崔鹏.一种新的大场景3维重建算法[J].四川大学学报(工程科学版),2015,47(6):91-96. 被引量:7
  • 6Curless B, Levoy M. A Volumetric Method for Building Complex Models from Range Images[C]. Proceedings of the 23rd Annual Con- ference on Computer Graphics and Interactive Techniques. ACM,1996: 303-312. 被引量:1
  • 7Furukawa Y, Ponce J. Accurate, Dense, and Robust Multiview Stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010, 32(8): 1362-1376. 被引量:1
  • 8Streeha C, yon Hansen W, Gool L V, et al. On benehmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery [C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2008:1-8. 被引量:1

二级参考文献17

  • 1Seitz S M,Curless B, Diebel J,et al. A comparison and e- valuation of multi-view stereo reconstruction algorithms [ C]//Proceedings of 2006 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. New York : IEEE,2006,1:519 - 528. 被引量:1
  • 2Tabb A. Shape from silhouette probability maps: Recon- struction of thin objects in the presence of silhouette ex- traction and calibration error[ C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recog- nition. Portland : IEEE ,2013 : 161 - 168. 被引量:1
  • 3Cremers D,Kolev K. Muhiview stereo and silhouette con- sistency via convex functionals over convex domains[ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence ,2011,33 (6) : 1161 - 1174. 被引量:1
  • 4Goesele M, Snavely N, Curless B, et al. Multi-view stereo for community photo collections[ C]//Proceedings of IEEE l lth International Conference on Computer Vision. Rio de Janeiro : IEEE, 2007 : 1 - 8. 被引量:1
  • 5Furukawa Y, Ponce J. Accurate, dense, and robust muhiv- Jew stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32 ( 8 ) : 1362 - 1376. 被引量:1
  • 6Bailer C, Finckh M, Lensch H. Scale robust multi view stereo[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer-Verlag, 2012 : 398 - 411. 被引量:1
  • 7Shen Shuhan. Accurate multiple view 3D reconstruction u- sing patch-based stereo for large-scale scenes [ j ]. IEEE Transactions on Image Processing, 2013,22 ( 5 ) : 1901 - 1914. 被引量:1
  • 8Wei J,Resch B, Lenseh H. Multi-view depth map estima- tion with cross-view eonsisteney IC]//Proeecdings of the British Machine Vision Conferenee. Nottingham: BMVA Press ,2014. 被引量:1
  • 9Shen Shuhan,Hu Zhanyi. How to select good neighboring images in depth-map merging based 3D modeling [ J]. IEEE Transactions on Image Processing,2014,23 ( 1 ) :308 -318. 被引量:1
  • 10Zheng E,Dunn E,Jojie V,et al. Patchmateh based joint view selection and depth-map estimation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pat- tern Recognition. Columbus : IEEE,2014 : 1510 - 1517. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部