期刊文献+

一种快速多视图立体匹配方法

A Fast Multi-View Stereo Matching Algorithm
下载PDF
导出
摘要 由于室外场景图像集具有规模巨大、尺度多变等特点,快速精准的多视图立体匹配受计算效率严重制约。为此,提出一种新的快速多视图立体匹配和优化方法。该方法首先基于Plane Sweep框架计算初始匹配代价;然后提出并行Semi-Global算法对匹配代价优化计算深度图;最后使用GPU对图像滤波剔除噪声点。实验结果表明,该方法可高效生成用于三维重建的优质深度图。 The accuracy and effieiency of multi-view stereo matching are seriously hindered by the scale of the image datasets and the different variety of dimension in outdoor scenes. To deal with it, proposes a novel quick multi-view stereo matching method. Firstly, computes raw matching cost by plane sweep framework. Then, proposes a parallel matching cost computing method based on Semi-global algorithm. Finally, uses the fihering to get rid of the image noise with GPU. Experimental results confirm the performance of the proposed method, which can be efficienlly generate high-quality depth map for 3D reconstruction.
作者 赵洪田
出处 《现代计算机》 2018年第1期18-21,共4页 Modern Computer
基金 四川省科技创新苗子工程资助项目(No.2017-003 No.2017-004)
关键词 多视图立体匹配 PLANE SWEEP Semi-Global优化 GPU Multi-View Stereo Matching Plane Sweep Semi-Global Optimization GPU
  • 相关文献

参考文献1

二级参考文献17

  • 1Seitz S M,Curless B, Diebel J,et al. A comparison and e- valuation of multi-view stereo reconstruction algorithms [ C]//Proceedings of 2006 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. New York : IEEE,2006,1:519 - 528. 被引量:1
  • 2Tabb A. Shape from silhouette probability maps: Recon- struction of thin objects in the presence of silhouette ex- traction and calibration error[ C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recog- nition. Portland : IEEE ,2013 : 161 - 168. 被引量:1
  • 3Cremers D,Kolev K. Muhiview stereo and silhouette con- sistency via convex functionals over convex domains[ J]. IEEE Transactions on Pattern Analysis and Machine In- telligence ,2011,33 (6) : 1161 - 1174. 被引量:1
  • 4Goesele M, Snavely N, Curless B, et al. Multi-view stereo for community photo collections[ C]//Proceedings of IEEE l lth International Conference on Computer Vision. Rio de Janeiro : IEEE, 2007 : 1 - 8. 被引量:1
  • 5Furukawa Y, Ponce J. Accurate, dense, and robust muhiv- Jew stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32 ( 8 ) : 1362 - 1376. 被引量:1
  • 6Bailer C, Finckh M, Lensch H. Scale robust multi view stereo[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer-Verlag, 2012 : 398 - 411. 被引量:1
  • 7Shen Shuhan. Accurate multiple view 3D reconstruction u- sing patch-based stereo for large-scale scenes [ j ]. IEEE Transactions on Image Processing, 2013,22 ( 5 ) : 1901 - 1914. 被引量:1
  • 8Wei J,Resch B, Lenseh H. Multi-view depth map estima- tion with cross-view eonsisteney IC]//Proeecdings of the British Machine Vision Conferenee. Nottingham: BMVA Press ,2014. 被引量:1
  • 9Shen Shuhan,Hu Zhanyi. How to select good neighboring images in depth-map merging based 3D modeling [ J]. IEEE Transactions on Image Processing,2014,23 ( 1 ) :308 -318. 被引量:1
  • 10Zheng E,Dunn E,Jojie V,et al. Patchmateh based joint view selection and depth-map estimation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pat- tern Recognition. Columbus : IEEE,2014 : 1510 - 1517. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部