期刊文献+

云计算环境下无线通信节点深度融合方法仿真 被引量:2

Cloud Computing Environment Depth Fusion Method of Wireless Communication Nodes under the Simulation
下载PDF
导出
摘要 为了更好的延长无线网络的寿命,提升无线网络的通信质量,需要进行无线通信节点深度融合方法的研究。但是采用当前方法进行节点深度融合时,无法给出节点间的相关性和相对距离,存在节点深度融合精度低的问题。为此,提出一种基于生命周期的云计算环境下无线通信节点深度融合方法。上述方法在云计算环境下根据融合数据率权函数模型将无线传感网络定义为一个抽象图,组建网络中各个节点的能耗模型,计算出通信节点间的相关性,获取各个节点融合的最大概率,依据最大生命周期方法得到通信节点进行通信时的能耗,并映射无线传感网络通信所有节点的最小生命期,利用AFMR方法得到各个节点融合前后数据量的变化,自适应调整无线通信节点的融合状态,完成了对云计算环境下无线通信节点深度融合。仿真证明,所提方法融合效率高,为延长无线网络的寿命,提升无线网络的通信质量奠定了基础。 A deep fusion method of wireless communication node under cloud computing environment is proposed based on life cycle. The wireless sensing network is defined as an abstract graph according to weight function model of fusion data rate under cloud computing environment, and then the energy consumption model of each node in network is built to work out correlation among communication nodes, and the maximum probability of fusion of each node is acquired. The energy consumption during communicating of communication node is obtained according to method of the maximum life cycle, and the minimum life cycle of all node of communication of wireless sensing network is mapped. Moreover, the AFMR method is used to obtain variation of data before and after each node fusion, and fu- sion state of wireless communication node is adaptively adjusted. Thus, the deep fusion is completed. Simulation proves that the method has high fusion efficiency. It lays foundation for prolonging lifetime of wireless network and im- proving communication quality of wireless network.
作者 娄红
出处 《计算机仿真》 北大核心 2017年第7期227-230,共4页 Computer Simulation
关键词 云计算环境 无线通信节点 融合 Cloud computing environment Wireless communication node Fusion
  • 相关文献

参考文献10

二级参考文献155

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2付东华.基于HDFS的海量分布式文件系统的研究与优化[D].北京:北京邮电大学,2012. 被引量:1
  • 3薛伟.分布式文件系统关键技术研究与实现[D].合肥:中国科学技术大学,2011. 被引量:1
  • 4DEAN J,GHEMAWAT S.MapReduce:Simplified data processing on large clusters[C]//Symposium on Operating System Design and Implementation(OSDI).2004:137-150. 被引量:1
  • 5GHEMAWAT S,GOBIOFF H,LEUNG S T.The Google file system[C]//Proceedings of the 19th ACM Symposium on Operating Systems Principles.2003:29-43. 被引量:1
  • 6CHANG F,DEAN J,GHEMAWAT S,et al.Bigtable:A distributed storage system for structureddata[C]//USENIX Symposium on Operating Systems Design and Implementation.2006,7:205-218. 被引量:1
  • 7ZHONG Longzhao,WANG Beizhan,WANG Zhiyan,et al.Research and application of massive data processing technology[C]//International Conference on Computer Science & Education(ICCSE).2013:829-833. 被引量:1
  • 8KAUSHIK R T,BHANDARKAR M,NAHRSTEDT K.Evaluation and analysis of Green HDFS:A self-adaptive,energy-conserving variant of the Hadoop distributed file system[C]//IEEE 2nd International Conference on Cloud Computing Technology and Science.2010:274-287. 被引量:1
  • 9VORA M N.Hadoop-HBase for large-scale data[C]//International Conference on Computer Science and Network Technology(ICCSNT).2011:601-605. 被引量:1
  • 10SKEIRIK S,BOBBA R B,MESEGUER J.Formal analysis of faulttolerant group key management using ZooKeeper[C]//IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing(CCGrid).2013:636-641. 被引量:1

共引文献74

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部