期刊文献+

机械故障特征信息提取的ICA信息融合方法 被引量:5

ICA Fusion for Feature Extraction of Mechanical Fault
下载PDF
导出
摘要 峭度和负熵是盲信号独立性的两个自然测度,可以被用来捕捉机械振动信号信息的动态变化特征,并提取机械设备的故障特征信息。峭度和负熵是从两个不同的角度和层面阐释机械设备的故障特征信息,信息量是互补的。若将峭度信息和负熵信息融合,则必然能够更全面、更深刻地来表征机械设备的状态。因此引入信息融合的思想,提出基于ICA信息融合的机械故障特征信息提取方法,综合峭度和负熵信息来提取机械设备的故障特征信息。液压齿轮泵模式识别试验表明,该方法可以应用于机械设备的故障特征信息提取。 The kurtosis and negentropy,as two natural measures of independence for blind signals,can be utilized to capture the dynamic information characteristics of mechanical vibration signals. The dynamic information can be extracted as their fault features. The kurtosis and negentropy can explain the feature information of mechanical fault from two different viewpoints that the and their information contents are complementary mutually. If the kurtosis information and negentropy information were fused into one feature vector,it can definitely express the running states of machines more comprehensively and more profoundly. A feature extraction method based on ICA fusion for mechanical fault was proposed,which can fuse the kurtosis information and negentropy information as the final optimum feature information. The pattern recognition experiments of hydraulic gear pump indicate that this method can be applied to feature extraction of mechanical equipment.
出处 《机械科学与技术》 CSCD 北大核心 2016年第7期1102-1106,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(61132008)资助
关键词 独立成分分析 信息融合 特征提取 模式识别 independent component analysis information fusion feature extraction pattern recognition
  • 相关文献

参考文献8

二级参考文献52

共引文献73

同被引文献39

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部