期刊文献+

基于峭度的ICA特征提取和齿轮泵故障诊断 被引量:5

ICA Feature Extraction and Fault Diagnosis Based on Kurtosis for a Gear Pump
下载PDF
导出
摘要 在机械设备盲信号处理和故障诊断中,信号的非高斯性至关重要,而峭度是非高斯性的自然度量指标,它反映了机械信号信息的动态变化特征。基于此提出了基于峭度的ICA特征提取和故障诊断方法,首先提取机械设备多通道观测信号的峭度值(或标准峭度,或峭度绝对值,或峭度平方),并依据观测通道顺序将峭度值组成低维ICA特征向量,进而利用最小二乘支持向量机进行机械设备的模式判别和故障诊断。试验表明:该方法的故障识别率基本上达到80%以上,而且相比标准峭度和峭度平方准则,基于峭度绝对值准则方法的模式识别率更高。 Mechanical signals′ non-gaussian property is very important to blind signal processing and fault diagnosis of mechanical equipment,and the kurtosis is a natural measurement for non-gaussian property of random variables.It denotes the dynamic information features of mechanical signals.ICA(independent component analysis) feature extraction and fault diagnosis algorithm based on kurtosis was proposed.This algorithm is composed of three steps:(1) to Abstract multi-channel observation signals′ kurtosis values(standard kurtosis values,or absolute kurtosis values,or square kurtosis values);(2) to form an ICA eigenvector from kurtosis values according to sequence of multi-channel observations;(3) to recognize different working patterns and diagnose different faults by least squares support vector machines.Its applications in hydraulic gear pumps′ feature extraction and fault diagnosis show that its fault diagnosis rate reaches 80% on the whole.Furthermore,compared with standard kurtosis value and square kurtosis value,absolute kurtosis value is a more appropriate choice.
出处 《机械科学与技术》 CSCD 北大核心 2011年第9期1583-1587,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 总装备部预研重点基金项目资助
关键词 独立成分分析 峭度 最小二乘支持向量机 特征提取 故障诊断 independent component analysis(ICA) kurtosis least squares support vector machines feature Abstraction fault diagnosis
  • 相关文献

参考文献15

二级参考文献43

共引文献74

同被引文献41

  • 1赵玉明,冯子明,赵卫华.往复泵泵阀故障诊断方法[J].流体机械,2005,33(1):42-44. 被引量:6
  • 2刘红梅,王少萍,欧阳平超.基于小波包和Elman神经网络的液压泵故障诊断[J].北京航空航天大学学报,2007,33(1):67-71. 被引量:23
  • 3Jiang Yu, Qin Li, Zhang Yuelei, et al. Vibration signal processing for gear fault diagnosis based on empirical mode decomposition and nonlinear blind source separation. Noiseand Vibration Worldwide, 2011 ;42 (10) :55-61. 被引量:1
  • 4Taleb A, Jutten C. Source separation in post-nonlinear mixtures. IEEE Transactions on Signal Processing, 1999 ;47 (10) :2807-2820. 被引量:1
  • 5Hosseini S, Jutten C, Pham D T. Mm'kovim~ Source Separation. IEEE Trans on Signal Processing, 2003 ;51:3009-3019. 被引量:1
  • 6Pham D T. Fast algorithm for estimating mutual information, entro- pies and score functions. Proceedings ICA' 03, Nara (Japan) 2003 : 17-22. 被引量:1
  • 7Jutten L C. Markovian Source Seperation in Post Nonlinear lnstata- neous Mixtures. Spain: Springer Berlin Heidelberg, 2004. 被引量:1
  • 8Ypma A, Pajunen P. Rotating machine vibration analysis with sec- ond-order independent component analysis. Proc Workshop on Inde- pendent Component Analysis and Signal Separation ( ICA ' 99 ) . France, ! 999. 被引量:1
  • 9Xu W H, Fu K. An intelligence diagnostic system for reciprocating machine [ C ]//Proceedings of IEEE International Conference on Intelligent Processing Systems, Beijing: IEEE, 1997:1520-1522. 被引量:1
  • 10Kong F S, Chen R H. A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks [ J ]. Mechanical Systems and Signal Processing, 2004,18( 1 ) : 161-168. 被引量:1

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部