期刊文献+

独立分量分析在直升机齿轮箱故障早期诊断中的应用 被引量:18

Application of Independent Component Analysis to Early Diagnosis of Helicopter Gearboxes
下载PDF
导出
摘要 齿轮箱早期的故障信号往往十分微弱 ,信噪比低 ,这大大限制了已有诊断方法在早期诊断中的应用 ,因此如何获取真实的振动信号是提高齿轮箱早期故障诊断质量的关键 ,独立分量分析 (ICA)为此提供了一种新的思路。文中研究了ICA在齿轮箱故障早期诊断中的应用 ,首先分析了齿轮箱的混合振动信号模型 ,然后针对具体的轴承故障进行了实验 ,并使用快速ICA算法分离出轴承的振动信号 ,再将其功率谱与原始振动信号的谱相比较 ,结果表明ICA更易于实现故障的早期诊断 ;最后提出了进一步的研究建议。 Early gearbox fault signal is often very weak and its SNR(signal to noise ratio) is low, which greatly constrains the use of existing diagnosis methods. Thus how to determine the true vibration signals is the key to improve the diagnostic performance. Independent component analysis (ICA) provides a way for it. This paper proposes the application of ICA to early diagnosis of helicopter gearboxes. First the composite model of gearbox vibration signal is built; then one experiment is done on one actual faulty bearing and the bearing vibration signal is separated by Fast ICA algorithm. Different PSDs(Power Spectrum Densities) between separated signal and original signal are compared and the results demonstrate that ICA can be used for early fault diagnosis easily indeed.
出处 《机械科学与技术》 CSCD 北大核心 2004年第4期481-483,500,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国防预研项目资助
关键词 独立分量分析 盲源分离 快速ICA算法 早期诊断 直升机齿轮箱 ICA BSS Fast ICA algorithm Early diagnosis Helicopter gearboxes
  • 相关文献

参考文献12

  • 1冯志鹏,宋希庚,薛冬新,谢宇,邓东风.旋转机械振动故障诊断理论与技术进展综述[J].振动与冲击,2001,20(4):36-39. 被引量:58
  • 2Ypma A, Leshem A, Duin B P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures [ J ]. Neurocomputing,2002,49 (4) :349 - 368. 被引量:1
  • 3Ypma A, Leshem A. Blind separation of machine vibration with bilinear forms[J]. Mechanical Systems and Signal Processing, 1994,8(4) :363 -380. 被引量:1
  • 4Ypma A, Pajunen P. rotating machine vibration analysis with second-order indenpent component analysis[A]. In : Proceedings of ICA'99[C] ,1999:37 -42. 被引量:1
  • 5Stone J V. Independent component analysis: an introduction [J]. Trend in Cognitive Science, 2002, 6(2) : 59 -64. 被引量:1
  • 6Aapo Hyviirinen. Survey on independent component analysis [J]. Neural Comlmling Surveys, 1999, (2) : 94 -128. 被引量:1
  • 7Aapo Hyviirinen, E. Oja. Independent component analysis : algorithms and applications [ J ]. Neural Networks, 2000, (13) : 411 -430. 被引量:1
  • 8David V Sáchez A. Frontiers of research in BSS/ICA [ J ]. Neurocomputing, 2002, (49) : 7 - 23. 被引量:1
  • 9Bell A J, Sejnowski T J. The independent component' of natural scenes are edge filters [ J ]. Vision Research, 1997, 37(23) : 3327 -3338. 被引量:1
  • 10Simon C, Loubaton P, Jutten C. Separation of a class of convolufive mixtures: a contrast function approach[J]. Signal Processing, 2001, 81(4) :883 -887. 被引量:1

二级参考文献16

共引文献70

同被引文献144

引证文献18

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部