期刊文献+

序列蛋白质-GDP绑定位点预测 被引量:2

Sequential protein-GDP binding residues prediction
下载PDF
导出
摘要 正确地识别蛋白质-二磷酸鸟苷(Guanosine Diphosphate,GDP)绑定位点对于蛋白质功能分析和药物设计有非常重要的意义。蛋白质-GDP绑定位点预测是一个典型的不平衡学习问题。直接应用传统的机器学习方法是不合适的,而且会使预测结果偏向大多数类。为了解决这个问题,在基于稀疏表示的位置特异性得分矩阵特征基础上,提出了加权下采样方法来使得样本平衡,采用支持向量机算法来预测。实验结果表明提出的方法能获得更高的预测性能。 Accurately identifying the protein-GDP binding sites is of significant importance for both protein function analysisand drug design. Protein-GDP binding residues prediction is a typical imbalanced learning problem. Directly applyingthe traditional machine learning approach for this task is not suitable as the learning results will be severely biasedtowards the majority class. To circumvent this problem, on the basis of position specific scoring matrix feature based onsparse representation, weighted under-sampling is developed to make samples balanced. Finally support vector machine isused for prediction. Experimental results show that the proposed method achieves higher prediction performances.
作者 石大宏 何雪
出处 《计算机工程与应用》 CSCD 北大核心 2016年第13期55-59,75,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61373062)
关键词 蛋白质-GDP绑定预测 位置特异性得分矩阵 稀疏表示 加权下采样 支持向量机 protein-GDP binding prediction position specific scoring matrix sparse representation weighted under-sampling support vector machine
  • 相关文献

参考文献25

  • 1Gao M,Skolnick J.The distribution of ligand-bindingpockets around protein-protein interfaces suggests a generalmechanism for pocket formation[J].Proc of NationalAcademy of Science of USA,2012,109(10):3784-3789. 被引量:1
  • 2Kokubo H,Tanaka T,Okamoto Y.Ab initio predictionof protein-ligand binding structures by replica-exchangeumbrella sampling simulations[J].Journal of ComputationalChemistry,2011,32(13):2810-2821. 被引量:1
  • 3Schmidtke P,Barril X.Understanding and predicting druggability.A high-throughput method for detection of drugbinding sites[J].Journal of Medicinal Chemistry,2010,53(15):5858-5867. 被引量:1
  • 4Berman H M,Westbrook J,Feng Z,et al.The protein databank[J].Nucleic Acids Res,2000,28(1):235-242. 被引量:1
  • 5Chen K,Mizianty M J,Kurgan L.ATP site:Sequence-basedprediction of ATP-binding residues[J].Proteome Sci,2011,9(S1):295-297. 被引量:1
  • 6Leis S,Schneider S,Zacharias M.In silico prediction ofbinding sites on proteins[J].Curr Med Chem,2010,17(15):1550-1562. 被引量:1
  • 7Campbell N A,Williamson B,Heyden R J.Biology:Exploringlife[M].Boston,Massachusetts:Pearson Prentice Hall,2006. 被引量:1
  • 8Abbaspour A,Baramakeh L.Application of principle componentanalysis-artificial neural network for simultaneousdetermination of zirconium and hafnium in real samples[J].Spectrochim Acta A,2006,64(2):477-482. 被引量:1
  • 9Chen K,Mizianty M J,Kurgan L.Prediction and analysisof nucleotide-binding residues using sequence andsequence-derived structural descriptors[J].Bioinformatics,2012,28(3):331-341. 被引量:1
  • 10Zhou Z H,Liu X Y.On multi-class cost-sensitive learning[J].Comput Intell-Us,2010,26(3):232-257. 被引量:1

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部