期刊文献+

基于支持向量机集成的蛋白质与维生素绑定位点预测

Protein-vitamin binding site prediction based on SVM ensemble
下载PDF
导出
摘要 在蛋白质与维生素绑定位点预测问题中,小类样本和大类样本之间存在显著的不平衡性,传统的机器学习方法将不再适用。针对此问题,在多重随机下采样的基础上结合支持向量机(SVM)集成来预测蛋白质与维生素的绑定位点,采用了一种改进的Ada Boost集成方法,称为MAda Boost集成。通过实验比较了不同的集成策略,其中MAda Boost集成效果最优。实验结果表明,采用随机下采样结合SVM集成将有效提高蛋白质维生素绑定位点预测的精度。 Since the obvious imbalance exists between small samples and large samples in protein-vitamin binding site pre-diction problem,the traditional machine learning approach is not suitable for this problem. To tackle this problem,protein-vita?min binding site is predict by combining multiple random sampling with SVM ensemble,an improved AdaBoost algorithm which is called MAdaBoost ensemble is adopted. Different ensemble strategies are compared by experiments,the MAdaBoost ensemble strategy is optimal. The experimental results show that the accuracy of protein-vitamin binding site prediction is improved by ap-plying random sampling with SVM ensemble method.
作者 朱非易
出处 《现代电子技术》 北大核心 2015年第9期90-95,共6页 Modern Electronics Technique
基金 江苏省自然科学基金-面上项目:面向蛋白质生物计算的特征抽取及动态学习模型研究(BK20141403)
关键词 蛋白质-维生素相互作用 绑定位点预测 多重随机下采样 SVM集成 ADABOOST算法 protein-vitamin interaction binding site prediction multiple random sampling SVM ensemble AdaBoost al-gorithm
  • 相关文献

参考文献19

  • 1ADAMS J S, HEWISON M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive im- munity [J]. Nature Clinical Practice Endocrinology & Metabo- lism, 2008, 4(2):80-90. 被引量:1
  • 2HE Hai-bo, GARCIA E A. Learning from imbalanced data [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284. 被引量:1
  • 3MOHAMED B, ALITOUCHE T A. Imbalanced data learning approaches review [J]. International Journal of Data Mining & Knowledge Management Process (IJDKP), 2013, 3(4) : 15-18. 被引量:1
  • 4LIU Xu-ying, WU Jian-xin, ZHOU Zhi-hua. Exploratory under- sampling for class-imbalance learning [J]. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 2009, 39(2) : 539-550. 被引量:1
  • 5YU Dong-jun, HU Jun, TANG Z M, et al. Improving protein- ATP binding residues prediction by boosting SVMs with random under-sampling [J]. Neurocomputing, 2013, 104: 180-190. 被引量:1
  • 6PANWAR B, GUPTA S, RAGHAVA G P S. Prediction of vita- min interacting residues in a vitamin binding protein using evo- lutionary information [J]. BMC bioinformatics, 2013,14(1) : 44-58. 被引量:1
  • 7ALTSCHUL S F, MADDEN T L, SCHAFFER A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res., 1997, 25(17): 3389- 3402. 被引量:1
  • 8KUMAR M, GROMIHA M M, RAGHAVA G P. Prediction of RNA binding sites in a protein using SVM and PSSM profile [J]. Proteins: Structure, Function and Bioinformatics, 2008, 71 (1): 189-194. 被引量:1
  • 9AGARWAL S, MISHRA N K, SINGH H, et al. Identification of mannose interacting residues using local composition [J]. PLoS ONE, 2011, 6(9): 1-8. 被引量:1
  • 10VAPNIK V N. The nature of statistical learning theory [M]. New York: Springer, 2000. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部