期刊文献+

基于多窗口不同特征的蛋白质相互作用位点预测

Prediction of protein interaction sites with different features and multi-window
下载PDF
导出
摘要 识别蛋白质相互作用位点在蛋白质功能研究中发挥着重要作用.文章从蛋白质序列出发,提取相关特征——序列谱、序列谱+信息熵,分别形成多个滑动窗口,以此构造输入特征向量.采用"留一法"生成训练数据集和测试数据集,使用支持向量机构建6种分类器,预测测试集中的表面残基是否是蛋白质相互作用位点,得到了较好的结果,说明了实验方法的有效性和可行性. Identification of protein-protein interaction sites plays an important role in protein's function. This paper from the primary sequence, distilled sequence profile and sequence profile combined with entropy as features of input vectors for different sliding windows, the datasets were trained and tested by leave-one-out, then interaction sites were classified by six kinds of Support Vector Machine (SVM). The results of predicting every surface residue was whether interaction site or not, had proved the validity and feasibility of that method.
作者 王菲露 宋杨
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2010年第5期64-68,共5页 Journal of Anhui University(Natural Science Edition)
基金 安徽省重大自然科学研究基金资助项目(ZD200906) 安徽建筑工业学院青年科研基金资助项目(20104008)
关键词 蛋白质相互作用位点 序列谱 信息熵 滑动窗口 支持向量机 protein-protein interaction site sequence profile information entropy sliding window Support Vector Machine (SVM)
  • 相关文献

参考文献9

  • 1倪青山,王正志,王广云,强波.基于局部支持向量机的蛋白质相互作用的预测方法[J].生物医学工程研究,2008,27(2):69-73. 被引量:4
  • 2Enright A J,Iliopoulos I,Kyrpides N C,et al.Protein interaction maps for complete genomes based on gene fusion events[J].Nature,1999,402(6757):86-90. 被引量:1
  • 3Gomez S M,Noble W S,Rzhetsky A.Learning to predict protein-protein interactions from protein sequences[J].Bioinformatics,2003,19(15):1875-1881. 被引量:1
  • 4Jones S,Thornton J M.Principles of protein-prtein interactions[J].Proc Natl Acad Sci USA,1996,93(1):13-20. 被引量:1
  • 5Piero Fariselli,Florencio Pazos,Alfonso Valencia,et al.Prediction of protein-protein interaction sites in heterocomplexes with neural networks Eur[J].Biochem,2002,269(5):1356 -1361. 被引量:1
  • 6王兵..蛋白质相互作用及其位点的预测方法研究[D].中国科学技术大学,2006:
  • 7McGinnis S,Madden T L.BLAST:at the core of a powerful and diverse set of sequence analysis tools[J].Nucleic Acids Res,2004,32(7):W20-W25. 被引量:1
  • 8Yohei Minakuchi,Kenji Satou,Akihiko Konagaya.Prediction of protein-protein interaction sites using support vector machines[J].Genome Informatics,2002(13):322-323. 被引量:1
  • 9Yan Changhui,Dobbs D,Honavar V,et al.A two stage classifier for identification of protein-protein interface residues[J].Bioinformatics,2004,20(1):371-378. 被引量:1

二级参考文献10

  • 1[1]Mrowka R,Patzak A,Herzel H.Is there a bias in proteome research[J].Genome Res 2001,11(12):1971-1973. 被引量:1
  • 2[2]Enright AJ,Iliopoulos I,Kyrpides NC,et al.Protein interaction maps for complete genomes based on gene fusion events[J].Nature,1999,402(6757):86-90. 被引量:1
  • 3[3]Goh CS,Cohen FE.Co-evolutionary analysis reveals insights into protein-protein interactions[J].J Mol Biol,2002,324(1):177-192. 被引量:1
  • 4[4]Sato T,Yamanishi Y,Kanehisa M,et al.The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships[J].Bioinformatics,2005,21(17):3482-3489. 被引量:1
  • 5[5]Craig RA,Liao L.Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices[J].BMC Bioinformatics,2007,8(1):6. 被引量:1
  • 6[6]Martin S,Roe D,Faulon JL.Predicting protein-protein interactions using signature products[J].Bioinformatics,2005,21(2):218-226. 被引量:1
  • 7[7]Nanni L.Fusion of classifiers for predicting Protein-Protein interactions[J].Neurocomputing,2005,68:289-296. 被引量:1
  • 8[8]Nanni L.Hyperplanes for predicting Protein-Protein interactions[J].Neurocomputing,2005,69:257-263. 被引量:1
  • 9[9]Nanni L,Lumini A.An ensemble of K-local hyperplanes for predicting protein-protein interactions[J].Bioinformatics,2006,22(10):1207-1210. 被引量:1
  • 10[10]Joachims T.Learning to classify text using support vector machines-methods,theory,and algorithms[D].Ithaca:Cornell University,2002. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部