期刊文献+

基于序列与结构特征结合的蛋白质与DNA绑定位点预测 被引量:1

Prediction of DNA-protein Binding Sites Based on Combining Sequence with Structure Information
下载PDF
导出
摘要 目前国内外对于DNA-蛋白质绑定位点预测的研究大多集中在仅以蛋白质序列信息或仅以蛋白质结构信息为基础进行计算,而二者结合所实现的预测效果较差。本文提出一种在蛋白质位置特异性得分矩阵序列特征的基础上,结合蛋白质残基的溶剂可及表面积、相对表面积、深度和突出指数这几个结合效果良好的结构特征的DNA与蛋白质绑定位点预测方法,并使用随机下采样方法解决训练集样本不平衡问题,最后使用支持向量机算法进行预测。实验结果表明,本文方法具有较好的预测能力。 Most of the research of DNA-protein binding sites are focusing on just computing protein sequence information or struc- ture information, while the results are terrible if combing this two information, no matter what at home or abroad. To solve this problem, we combine protein structure information of accessible surface area, relative solvent accessibility, depth index and pro- trusion index with protein sequence information of position specific scoring matrix to predict DNA-Protein binding sites. Then we use under sampling to solve the unbalance problem of training dataset. Finally, we use support vector machine to make predic- tion. The result of experiment shows the method that we proposed can achieve better performance in prediction.
作者 杨骥
出处 《计算机与现代化》 2016年第1期20-25,共6页 Computer and Modernization
关键词 位置特异性得分矩阵 可及表面积 相对表面积 深度与突出指数 随机下采样 支持向量机 position specific scoring matrix accessible surface area relative solvent accessibility depth index and protrusionindex under sampling support vector machine
  • 相关文献

参考文献17

  • 1Ptashne M. Regulation of transcription: From lambda to eukaryotes[J]. Trends in Biochemical Sciences, 2005,30(6):275-279. 被引量:1
  • 2Ahmad S, Sarai A. PSSM-based prediction of DNA binding sites in proteins[J]. BMC Bioinformatics, 2005,6:33. 被引量:1
  • 3Hwang S, Gou Z, Kuznetsov I B. DP-Bind: A Web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins[J]. Bioinformatics, 2007,23(5):634-636. 被引量:1
  • 4Wang L, Huang C, Yang M Q. BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features[J]. BMC Systems Biology, 2010,4(Suppl1):S3. 被引量:1
  • 5Wang Liangjiang, Yang M Q, Yang J Y. Prediction of DNA-binding residues from protein sequence information using random forests[J]. BMC Genomics, 2009,10(Suppl 1):S1. 被引量:1
  • 6Yu Dong-jun, Hu Jun, Wu Xiao-Wei, et al. Learning protein multi-view features in complex space[J]. Amino Acids, 2013,44(5):1365-1379. 被引量:1
  • 7Lee B, Richards F M. The interpretation of protein structures: Estimation of static accessibility[J]. Journal of Molecular Biology, 1971,55(3):379-400,IN3-IN4. 被引量:1
  • 8Ahmad S, Gromiha M M, Sarai A. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information[J]. Bioinformatics, 2004,20(4):477-486. 被引量:1
  • 9Meshkin A, Ghafuri H. Prediction of relative solvent accessibility by support vector regression and best-first method[J]. EXCLI Journal, 2010,9:29-38. 被引量:1
  • 10Rost B, Sander C. Conservation and prediction of solvent accessibility in protein families[J]. Proteins, 1994,20(3):216-226. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部