期刊文献+

植物SnRK家族的研究进展 被引量:8

Research progress of plant family of SnRK
原文传递
导出
摘要 植物在自然界中面临各种环境侵害时候,如干旱、盐、低温和病菌袭击,会启动自身的抵御机制来适应各种侵害。蔗糖非发酵相关的蛋白激酶(sucrose non-fermenting-1-related protein kinase,SnRK)是广泛存在于植物中的一类Ser/Thr蛋白激酶,参与各种胁迫信号传导通路,对植物抵御不良环境起到重要作用。植物中蔗糖非发酵相关的蛋白激酶共有38个成员,可以分为3个亚家族:SnRK1、SnRK2和SnRK3。本文主要讨论SnRK家族的研究进展,揭示SnRK家族在植物抗逆中的重要作用。 In nature, plants are frequently exposed to harmful environmental conditions such as drought, salt, cold and pathogen attack. In order to survive, plants sense and respond to the change of their environment through various defense mechanisms. Sucrose non-fermenting-1-related protein kinase(SnRK) is a family of Ser/Thr protein kinase that generally exists in plants. When plants are subjected to environment stress, SnRK will be induced and participate in many signal transduction pathways to defense detrimental environment conditions. SnRK family comprises 38 members, which are subdivided into three sub-families: SnRK1, SnRK2, and SnRK3. In this summary, the research progress of the family of SnRK will be described to reveal the importance of SnRK family in plants.
出处 《植物生理学报》 CAS CSCD 北大核心 2016年第4期413-422,共10页 Plant Physiology Journal
基金 国家自然科学基金(30600375)~~
关键词 信号通路 蔗糖非发酵相关的蛋白激酶(SnRK) SnRK1 SnRK2 SnRK3 signal pathway sucrose non-fermenting-1-related protein kinase(SnRK) SnRK1 SnRK2 SnRK3
  • 相关文献

参考文献3

二级参考文献159

  • 1Sasaki, T., Mori, I.C., Furuichi, T., Munemasa, S., Toyooka, K., Matsuoka, K., Murata, Y., and Yamamoto, Y. (2010). Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51, 354-365. 被引量:1
  • 2Sato, A., et al. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OSTI/SnRK2.6 protein kinase. Biochem. J. 424, 438-448. 被引量:1
  • 3Schoonheim, P.J., Sinnige, M.R, Casaretto, J.A., Veiga, H., Bunney, T.D., Quatrano, R.S., and de Boer, A.H. (2007). 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J. 49, 289-301. 被引量:1
  • 4Schroeder, J., and Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature. 338, 427-430. 被引量:1
  • 5Schwartz, A., Wu, W.-H., Tucker, E.B., and Assmann, S.M. (1994). Inhibition of inward K^+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc. Natl Acad. Sci. U S A. 91, 4019-4023. 被引量:1
  • 6Schwarz, M., and Schroeder, J.I. (1988). Abscisic acid maintain S-type anion channel activity in ATP-depleted Vicia faba guard cells. FEBS Lett. 428, 177-182. 被引量:1
  • 7Scippa, G.S., DiMichele, M., Onelli, E., Patrignani, G., Chiatante, D., and Bray, E.A. (2004). The histone-like protein H1-S and the response of tomato leaves to water deficit. J. Exp. Bot. 55, 99-109. 被引量:1
  • 8Shang, Y., et al. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell. 22, 1909-1935. 被引量:1
  • 9Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., and Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J. Exp. Bot. 51, 1575-1584. 被引量:1
  • 10Sharp, R.E., Poroyko, V., Hejlek, L.G., Spollen, W.G., Springer, G.K., Bohnert, H.J., and Nguyen, H.T. (2004). Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55, 2343-2351. 被引量:1

共引文献90

同被引文献54

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部