期刊文献+

关于丢番图方程X^2-(a^2+1)Y^4=35-12a的讨论 被引量:3

Discussion on the Diophantine equation X^2-(a^2+1)Y^4=35-12a
下载PDF
导出
摘要 设a是正整数,证明了当a=1时,方程X2-(a2+1)Y4=35-12a仅有正整数解(X,Y)=(5,1);当a=2时,该方程仅有正整数解(X,Y)=(4,1)和(56,5);当a=3时,该方程仅有正整数解(X,Y)=(3,1);当a=4时,该方程仅有正整数解(X,Y)=(2,1)和(202,7);当a=5时,该方程仅有1组互素的正整数解(X,Y)=(1,1);当a=6时,该方程无正整数解(X,Y);当a≥7且12a+1为非平方数时,该方程最多有3组互素的正整数解(X,Y);当a≥7且12a+1为平方数时,该方程最多有4组互素的正整数解(X,Y). Let abe an positive integer.We prove that if a=1,then the equation X^2-(a^2+1)Y^4=35-12 ahas only one positive integer solution(X,Y)=(5,1);If a=2,then the equation has only two positive integer solutions,(X,Y)=(4,1)and(56,5);If a=3,then the equation has only one positive integer solution(X,Y)=(3,1);If a=4,then the equation has two positive integer solutions(X,Y)=(2,1)and(202,7);If a=5,then the equation has one coprime positive integer solution(X,Y)=(1,1);If a=6,then the equation has no positive integer solution(X,Y);If a≥7and 12a+1is a nonsquare positive integer,the equation has at most three coprime positive integer solutions;While if a≥7and 12a+1is a square,the equation has at most four coprime positive integer solutions.
作者 管训贵
机构地区 泰州学院数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2016年第2期138-143,共6页 Journal of Zhejiang University(Science Edition)
基金 江苏省教育科学"十二五"规划项目(D201301083) 云南省教育厅科研项目(2014Y462) 泰州学院教授基金项目(TZXY2015JBJJ002)
关键词 四次方程 虚二次域 丢番图逼近 解数 上界 quartic equations imaginary quadratic fields Diophantine approximations number of positive integer solutions upper bound
  • 相关文献

参考文献4

二级参考文献30

  • 1YUAN PingZhi 1 & ZHANG ZhongFeng 2 1 School of Mathematics,South China Normal University,Guangzhou 510631,China,2 School of Mathematics & Computational Science,Sun Yat-Sen University,Guangzhou 510275,China.On the diophantine equation X^2-(1+a^2)Y^4 =-2a[J].Science China Mathematics,2010,53(8):2143-2158. 被引量:7
  • 2朱卫三,数学学报,1985年,5卷,681页 被引量:1
  • 3柯召,数学学报,1980年,23卷,922页 被引量:1
  • 4孙琦,数学进展,1989年,18卷,1页 被引量:1
  • 5Pingzhi Yuan.Rational and algebraic approximations of algebraic numbers and their application[J]. Science in China Series A: Mathematics . 1997 (10) 被引量:1
  • 6He B,Togbe A,Walsh P G.On the Diophantine equation x 2 - (2 2m + 1)y 4 = -2 2m. Publications Mathematicae Debrecen . 2008 被引量:1
  • 7Luca F,Walsh P G.Squares in Lehmer sequences and some Diophantine equations. Acta Arithmetica . 2001 被引量:1
  • 8Tengely S.Effective Methods for Diophantine Equations. . 2005 被引量:1
  • 9Voutier P M.Thue’s fundamentaltheorem I: the general case. Acta Arithmetica . 2010 被引量:1
  • 10Walsh P G.On the number of large integer points on elliptic curves. Acta Arithmetica . 2009 被引量:1

共引文献37

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部