期刊文献+

关于丢番图方程X^2-(a^2+1)Y^4=8-6a 被引量:6

On the Diophantine Equation X^2-(a^2+1)Y^4=8-6a
原文传递
导出
摘要 设a是正整数.本文证明了:当a=1时,方程X^2-(a^2+1)Y^4=8~6a仅有正整数解(X,Y)=(2,1);当a=2时,该方程仅有正整数解(X,Y)=(1,1);当a=3时,该方程无正整数解(X,Y);当a=4时,该方程仅有2组互素的正整数解(X,Y)=(1,1)和(103,5);当a≥5且6a+1非平方数时,该方程最多有3组互素的正整数解(X,Y);当a≥5且6a+1为平方数时,该方程最多有4组互素的正整数解(X,Y). Let a be a positive integer.In this paper,we prove that if a = 1,then the equation X^2-(a^2 + 1)Y^4 = 8-6a has only one positive integer solution(X,Y) =(2,1);if a = 2,then the equation has only one positive integer solution(X,Y) =(1,1);if a = 3,then the equation has no positive integer solution(X,Y);if a = 4,then the equation has only two coprime positive integer solutions(X,Y) =(1,1),(103,5);if a ≥ 5 and 6a + 1 is a nonsquare positive integer,then the equation has at most three coprime positive integer solutions(X,Y);if a ≥ 5 and 6a + 1 is a square,then the equation has at most four coprime positive integer solutions(X,Y).
作者 管训贵
机构地区 泰州学院
出处 《数学进展》 CSCD 北大核心 2017年第3期355-372,共18页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11471144) 云南省教育厅科研课题(No.2014Y462) 泰州学院重点课题(No.TZXY2014ZDKT007) 泰州学院教博课题(No.TZXY2016JBJJ001)
关键词 四次方程 虚二次域 丢番图逼近 解数 上界 quartic equations imaginary quadratic fields Diophantine approximations number of positive integer solutions upper bound
  • 相关文献

参考文献1

  • 1YUAN PingZhi 1 & ZHANG ZhongFeng 2 1 School of Mathematics,South China Normal University,Guangzhou 510631,China,2 School of Mathematics & Computational Science,Sun Yat-Sen University,Guangzhou 510275,China.On the diophantine equation X^2-(1+a^2)Y^4 =-2a[J].Science China Mathematics,2010,53(8):2143-2158. 被引量:7

二级参考文献26

  • 1Pingzhi Yuan.Rational and algebraic approximations of algebraic numbers and their application[J]. Science in China Series A: Mathematics . 1997 (10) 被引量:1
  • 2He B,Togbe A,Walsh P G.On the Diophantine equation x 2 - (2 2m + 1)y 4 = -2 2m. Publications Mathematicae Debrecen . 2008 被引量:1
  • 3Luca F,Walsh P G.Squares in Lehmer sequences and some Diophantine equations. Acta Arithmetica . 2001 被引量:1
  • 4Tengely S.Effective Methods for Diophantine Equations. . 2005 被引量:1
  • 5Voutier P M.Thue’s fundamentaltheorem I: the general case. Acta Arithmetica . 2010 被引量:1
  • 6Walsh P G.On the number of large integer points on elliptic curves. Acta Arithmetica . 2009 被引量:1
  • 7Akhtari S.The method of Thue and Siegel for binary quartic forms. Acta Arithmetica . 2010 被引量:1
  • 8Chen J H,Voutier P M.A complete solution of the Diophantine equation x 2 + 1 = dy 4 and a related family of quartic Thue equations. Journal of Number Theory . 1997 被引量:1
  • 9Dujella A.Continued fractions and RSA with small secret exponent. Tatra Mt Math Publ . 2004 被引量:1
  • 10Yuan P Z,Zhang Z F.On the diophantine equation X 2 - (a 2 + 4p 2n )Y 4 = -4p 2n. Acta Arithmetica . 被引量:1

共引文献6

同被引文献17

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部