摘要
讨论了紧致无边流形上Laplace算子的特征值在Yamabe流上随时间的变化情况,结合极值原理得到了Laplace算子特征值的单调性.
Yamabe flow is an important object in geometry. The change rate of eigenvalues of Laplacian operator is studied along Yamabe flow on compact non-boundary Riemannian manifold. Using maximum theorem, a new monotonicity is obtained.It may be useful in the analysis of global geometry.
出处
《数学的实践与认识》
北大核心
2016年第7期273-275,共3页
Mathematics in Practice and Theory
基金
国家自然科学基金(71403019)