期刊文献+

黎曼流形上三个微分算子各自在共形度量下的关系式

Respective Relational Expression of Three Differential Operators on Riemannian Manifolds Under the Conformal Riemannian Metric
下载PDF
导出
摘要 散度算子、梯度算子和Laplace算子不仅是微分几何中非常重要的微分算子,而且在数学的其他分支学科中也扮演着举足轻重的角色。从黎曼几何的角度出发,根据黎曼流形上的散度算子、梯度算子、Laplace算子以及共形的黎曼度量的定义,在黎曼流形的局部坐标系下,通过直接计算,分别推导出散度算子、梯度算子和Laplace算子各自在共形的黎曼度量下的关系式。 Divergence operators,gradient operators and Laplacian operators are critical differential operators in differential geometry and play an essential role in other branches of mathematics.In this paper,from the perspective of Riemannian geometry,according to the definitions of the divergence operator,gradient operator,Laplacian operator and the conformal Riemannian metric on Riemannian manifolds,in the local coordinate system of Riemannian manifolds,we derive the relational expressions of the divergence operator,gradient operator and Laplacian operator under the conformal Riemannian metric respectively through direct calculations.
作者 田大平 汪敏 TIAN Daping;WANG Min(School of Artificial Intelligence,Jianghan University,Wuhan 430056,Hubei,China)
出处 《江汉大学学报(自然科学版)》 2022年第1期27-32,共6页 Journal of Jianghan University:Natural Science Edition
关键词 黎曼流形 散度算子 梯度算子 LAPLACE算子 共形黎曼度量 Riemannian manifolds divergence operator gradient operator Laplacian operator conformal Riemannian metric
  • 相关文献

参考文献9

二级参考文献36

  • 1姚久民,石凤良.球坐标系中拉普拉斯算符表达式的推导[J].唐山师范学院学报,2005,27(5):67-71. 被引量:10
  • 2邹晓溶.正交标架丛上拉普拉斯算子的一些应用(英文)[J].南京大学学报(数学半年刊),2006,23(2):252-262. 被引量:3
  • 3Do M P Carmo and Wallach N R. Minimal Immersions of Spheres into Spheres. Ann. of Math.,1971, 93: 43-62. 被引量:1
  • 4U-Hang Ki Yeong-Wu Choe and Ryoichi Takagi. Compact Minimal Generic Submanifolds with Parallel Normal Section in a Complex Projective Space. Osaka J. Math., 2000, 37: 489-499. 被引量:1
  • 5Gilkey P B and Park J H. Riemannian Submersions which Preserve the Eigenforms of the Laplacian.Illinois J. Math., 1996, 40(2): 194-201 被引量:1
  • 6Wu H Shen C L and Yu Y L. Introduction to Riemannian Geometry. Peijing Univ Press, 1989. 被引量:1
  • 7Yau S T. Submanifolds with Constant Mean Curvature (i). Amer. J. Math., 1974, 96(2): 346-366. 被引量:1
  • 8Zou X R,and Li Y W. Minimality and Harmonicity for Vector Fields on the Frame Bundle. Publ.Math. Debrecen, 2005, 67(3-4): 457-470. 被引量:1
  • 9Zou X R. On the Geodescis of the Frame Bundles of Riemannian Manifolds. to Appear. 被引量:1
  • 10Chow B. The Yamabe flow on locally conformally flat manifold with positive curvature[J]. Comm Pure Appl Math, 1992, 45: 1003-1014. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部