摘要
研究了相变问题中固液相截面的运动方程.在假定M0是一致凸的,环境温度c(x,t)是一个正常数的条件下,得到了整体古典解的存在性.发现有两种可能性:一是Mt在(0,∞)内部存在且Mt保持凸,这种情况对应于:一定时间以后,向外去的速度c起主导作用,将初始流形一直拉到无穷远;二是经过一定时间后向内走的速度H起主导作用,Mt向内收缩,有限时刻T后变为一点,并且Mt(0tT)是一致凸的,MT是一个点.文中的结果推广了Huisken关于平均曲率流的结果.
In this paper, a kind of special geometric evolution equations of phase boundary is discussed. The existence and uniqueness are proved in the global classical solutions of this problem in case the initial surface is uniformly convex and environment temperature c is a positive constant. Two phenomena can occur. If inner normal velocity H is larger than outer normal velocity c , surface M t shrink down to a single point after a finite time. If outer normal velocity c is larger than inner normal velocity H after a finite time, surfaces M t exist in (0,+∞) and preserve convexity.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
1998年第3期1-8,共8页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金
江苏省教委自然科学基金
关键词
平均曲率流
整体古典解
紧致无边流形
mean curvature flow
global classical solutions
compact manifold without boundary