期刊文献+

基于分布式压缩感知的重轨干涉SAR形变检测方法与实验(英文) 被引量:2

Deformation detection approach for repeat-pass InSAR based on distributed compressed sensing
下载PDF
导出
摘要 提出一种基于分布式压缩感知(DCS)的重轨干涉SAR形变检测方法.DCS理论利用多次观测信号集的联合稀疏特性和相关性,对信号集进行联合重建.本文将DCS理论引入微波成像形变检测中,并对地基SAR复数据进行处理,利用相位数据检测场景形变,比较压缩感知(CS)算法和DCS算法在降采样条件下的重建结果.CS算法和DCS算法都具有保相性,在幅度和相位图像中可以很好地消除副瓣,成像效果比Omega-k算法好.基于DCS的稀疏微波联合观测系统可以利用多幅场景间回波数据的联合稀疏特性,进一步降低数据采集,实现准确重建和检测. A model for repeat-pass interferometric synthetic aperture radar (InSAR) is proposed to detect deformation based on distributed compressed sensing (DCS). DCS is applied to recover the signals from independent observations of multiple sensors, which are sparse in a transform domain and coherent with each other. We conduct a series of ground-based SAR experiments to compare the recovery performance using different imaging algorithms, such as compressed sensing (CS) and DCS. We find that images recovered by CS and DCS can preserve the phase information of the complex data and have better focus and lower sidelobes than those by Omega-k. Furthermore, by taking advantage of the joint sparsity among multiple scene echoes, DCS joint observation system can further reduce independent observations than CS and achieve scene reconstruction and deformation detection.
出处 《中国科学院大学学报(中英文)》 CSCD 北大核心 2016年第1期107-114,共8页 Journal of University of Chinese Academy of Sciences
关键词 形变检测 重轨干涉测量 干涉合成孔径雷达 分布式压缩感知 deformation detection repeat track interferometry (RTI) interferometric synthetic aperture radar (InSAR) distributed compressed sensing (DCS)
  • 相关文献

参考文献2

二级参考文献19

  • 1Ian G C, Frank H W. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood, MA: Artech House, 2005. 被引量:1
  • 2Emmanuel J C, Justin R, Terence T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52:489-509. 被引量:1
  • 3Emmanuel J C, Terence T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inf Theory, 2006, 52:5406 -5425. 被引量:1
  • 4David L D. Compressed sensing. IEEE Trans Inf Theory, 2006, 52:5406-5425. 被引量:1
  • 5Emmanuel J C, Michael B W. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25:21-30. 被引量:1
  • 6Marco F D, Shriram S, Dror B D, et al. Distributed compressed sensing of jointly sparse signals. In: 39th Asilomar Conf on Signals, Systems and Computers, 2005, 24:1537-1541. 被引量:1
  • 7Dror B, Marco F D, Shriram S, et al. Distributed compressive sensing. "Distributed compressed sensing," Technical Report, TREE0612, Rice University, Houston, TX, Nov. 2006. Available at http://dsp.rice.edu/cs/. 被引量:1
  • 8Marivi T, Paco L D, Jordi J M. A novel strategy for radar imaging based on compressive sensing. IGARSS 2008, II: 213 216. 被引量:1
  • 9Yeo Y, Moeness G A. Compressed sensing technique for high-resolution radar imaging. SPIE Signal Process Sensor Fusion Target Recog, 2008, 6968, 1:1- 10. 被引量:1
  • 10Ivana S W, Clem K, Mujdat C. Compressed sensing of mono-static and multi-static SAR. SPIE Algor Synth Apert Radar Imag, 2009, 73370, 5:1-12. 被引量:1

共引文献52

同被引文献9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部