期刊文献+

基于压缩感知的线状目标一维距离成像

The One-dimensional Range Imaging of Linear Target Based on Compressive Sensing
下载PDF
导出
摘要 传统雷达受到Nyquist采样率的限制,在高分辨率的需求下会产生非常庞大的数据。压缩感知理论降低了整个系统对于采样设备以及存储设备的要求。该文在压缩感知的框架下引入一种基于目标特征的不完备的基集合,并建立与之适应的恢复算法。该方法无需事先已知问题的稀疏度,且在求解长度较长的线状目标问题时具有较好的性能。此外,对于线状多目标的问题该方法也可同样求解。仿真结果验证了所提算法的有效性。 In conventional radar system, the resolution is constrained by Nyquist sampling rate. A large amount of data is created under the high-resolution requirement. Compressive Sensing (CS) relieves the demand of A/D converter and the capacity of memories. Under the framework of CS, a set of bases, which is incomplete but is based on the targets' features, is given out in this paper. A method is proposed for reconstruction that is compatible with the bases. The sparseness of the issue is not necessary for the proposed approach. And the method has very good performance on dealingwith linear targets, especially when the lengths of the targets are very long. Furthermore, it can also resolve the multi-target issue. The simulation results verify the efficiency of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第3期568-574,共7页 Journal of Electronics & Information Technology
基金 国家973计划项目(2010CB731904)资助课题
关键词 雷达 压缩感知 线状目标 目标特征 迭代恢复算法 多目标 Radar Compressive Sensing (CS) Linear target Targets' feature Iterated reconstruction method Multi-target
  • 相关文献

参考文献16

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 3Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J], IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 4Zhao Y J, Zhuang X Y, Wang H J, et al.. Sub-Nyquist sampling of high-speed repetitive waveforms using compressed sensing[J]. Journal of Scientific & Industrial Research, 2011, 70(2): 118-122. 被引量:1
  • 5Liu Z, Nutter B, Ao J Q, et al.. Wavelet encoded MR image reconstruction with compressed sensing [C]. Medical Imaging 2011: Physics of Medical Imaging, Lake Buena Vista, FL, USA. 2011. 7961: 79613Z. 被引量:1
  • 6Zhao Y Q, Zhang L L, Duan G T, et al.. Single-pixel terahertz imaging via compressed sensing[C]. International Symposium on Photoelectronic Detection and Imaging 2011: Terahertz Wave Technologies and Applications, Beijing, China, 2011, 8195: 81950Q. 被引量:1
  • 7Ender J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414. 被引量:1
  • 8Baraniuk R and Steeghs P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Boston, MA, USA, 2007:128-133. 被引量:1
  • 9Anitori L, Otten M, and Hoogeboom P. Compressive sensing for high resolution radar imaging[C]. 2010 Asia Pacific Microwave Conference (APMC 2010), Yokohama, Japan, 2010: 1809-1812. 被引量:1
  • 10Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254. 被引量:1

二级参考文献4

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部