期刊文献+

基于CUDA的阈值迭代算法并行实现 被引量:3

Parallel implementation of iterative shrinkage-thresholding algorithm via CUDA
下载PDF
导出
摘要 利用CUDA编程在GPU平台设计并行实现阈值的迭代算法,并应用于稀疏微波成像.仿真实验结果表明,在正确重建信号的前提下,相对于常规的CPU串行计算,采用GPU并行处理能加快运算,提高成像速度. We design and implement iterative shrinkage-thresholding algorithm(ISTA) on GPU via CUDA programming,and apply it in sparse microwave imaging.The simulation results show that,compared to CPU-based implementation,GPU-based implementation reconstructs correct signals at a faster computation speed.
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2013年第5期676-681,共6页 Journal of University of Chinese Academy of Sciences
基金 国家973计划项目(2010CB731905)资助
关键词 稀疏微波成像 阈值迭代算法 计算统一设备架构(CUDA) 并行处理 sparse microwave imaging iterative shrinkage-thresholding algorithm(ISTA) compute unified device architecture(CUDA) parallel processing
  • 相关文献

参考文献4

二级参考文献37

  • 1杨俊,杨波,王跃科,宫二玲,张传胜.大频移低信噪比下扩频通信的载频提取及其DSP实现[J].数据采集与处理,2004,19(2):174-179. 被引量:4
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine. 2008, 25(2): 21-30. 被引量:1
  • 4Rilling G, Davies M E, and Mulgrew B. Compressed sensing based compression of SAR raw data[C]. SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations,Saint Malo, France, 2009, ID 00369560. 被引量:1
  • 5Bhattacharya S, Blumensath T, and Mulgrew B, et al.. Fast encoding of synthetic aperture radar raw data using compressed sensing[C]. IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 2007: 448-452. 被引量:1
  • 6Li J, Xing M, and Wu S. Application of compressed sensing in sparse aperture imaging of radar[C]. APSAR 2009. 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi'an China, 2009: 651-655. 被引量:1
  • 7Patel V M, Easley G R, and Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254. 被引量:1
  • 8Nvidia. CUDA Programming Guide Version 2.3.1 [EB/OL] http://developer.download.nvidia.com/compute/cuda/2_3/ toolkit/docs/NVIDIA CUDA Programming Guide 2.3.p df, 2010-03-05. 被引量:1
  • 9Borghi A, Darbon J, and Peyronnet S, et al.. A simple compressive sensing algorithm for parallel many-core architectures. Department of Mathematics, UCLA, CAM Report 08-64, September, 2008. 被引量:1
  • 10Andrecut M. Fast GPU implementation of sparse signal recovery from random projections [J]. Engineering Letters, 2009, 17(3): 151-158. 被引量:1

共引文献60

同被引文献17

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部