期刊文献+

一种新的基于Omega-K算法的稀疏场景压缩感知SAR成像方法(英文) 被引量:3

CS-SAR Imaging Method Based on Inverse Omega-K Algorithm
下载PDF
导出
摘要 很多文献已经证明压缩感知应用在SAR成像中的有效性。现有的CS-SAR成像算法非常耗时,尤其是对于高分辨率的图像来说更甚。该文针对稀疏场景提出了一种基于omega-K算法,精确且高效的CS-SAR成像算法——CS-OKA算法。我们首先推导出了omega-K算法的逆算子,可不通过发射信号和场景的卷积来直接得到回波信号。在此基础上我们将SAR成像问题建立为一个稀疏优化问题,并用迭代阈值的方法来求解。仿真结果表明,当场景稀疏时该文的方法可以在远低于Nyquist采样率的前提下有效地恢复出原始场景,并且时耗和存储量都显著降低。 Compressed Sensing (CS) has been proved to be effective in Synthetic Aperture Radar (SAR) imaging. Previous CS-SAR imaging algorithms are very time consuming, especially for producing high-resolution images. In this study, we propose a new CS-SAR imaging method based on the well-known omega-K algorithm: which is precise and convenient to use in SAR imaging. First, we derive an inverse omega-K algorithm to dir- ectly obtain echoes without any convolution between the transmitted signal and scene. Then, we formulate the SAR imaging problem into a sparse regularization problem and solve it using an iterative thresholding al- gorithm. With our derived inverse omega-K algorithm, we can save significant amounts of computation time and computer memory usage. Simulation results show that the proposed method can effectively recover SAR images with much less data than that required by the Nyquist rate.
出处 《雷达学报(中英文)》 CSCD 2017年第1期25-33,共9页 Journal of Radars
基金 The National Natural Science Foundation of China(61431016)
关键词 合成孔径雷达 压缩感知 Omega-K算法 迭代阈值算法 Synthetic Aperture Radar (SAR) Compressed Sensing (CS) Omega-K Algorithm (OKA) Iterat-ive thresholding algorithm
  • 相关文献

参考文献1

二级参考文献23

  • 1Curlander.John C and Robert N McDonough.Synthetic Aperture Radar[M].New York:John Wiley & Sons,1991. 被引量:1
  • 2Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 3Candes E J and Tao T.Near-optimal signal recovery from random projections:universal encoding strategies?[J].IEEE Transactions on Information Thcory,2006,52(12):5406-5425. 被引量:1
  • 4Baraniuk R and Steeghs P.Compressive radar imaging[C].2007 IEEE Radar Conference,2007:128-133. 被引量:1
  • 5Potter L C,Ertin E,Parker J T,et al.Sparsity and compressed sensing in radar imaging[J].Proceedings of the IEEE,2010,98(6):1006-1020. 被引量:1
  • 6Joachim H G Ender.On compressive sensing applied to radar[J].Signal Processing.2010,90(5):1402-1414. 被引量:1
  • 7Zhu Xiao-xiang and Bamler R.Demonstration of super-resolution for tomographic SAR imaging in urban environment[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(8):3150-3157. 被引量:1
  • 8Gurbuz A C,McClellan J H,and Scott W R.A compressive sensing data acquisition and imaging method for stepped frequency GPRs[J].IEEE Transactions on Signal Processing,2009,57(7):2640-2650. 被引量:1
  • 9Austin Christian Ertin D E,and Moses R L.Sparse signal methods for 3-D radar imaging[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3):408-423. 被引量:1
  • 10Prunte L.GMTI from multichannel SAR images using compressed sensing[C].9th European Conference on Synthetic Aperture Radar.2012,EUSAR,2012:199-202. 被引量:1

共引文献28

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部