期刊文献+

约束稳健独立分量分析在滚动轴承故障诊断中的应用 被引量:1

Application of Constrained Robust Independent Component Analysis in the Fault Diagnosis of Rolling Element Bearing
原文传递
导出
摘要 独立分量分析方法广泛应用于机械设备故障诊断领域。在稳健独立分量分析方法的基础上,结合故障特征频率先验信息,提出了一种约束稳健独立分量分析方法。该算法首先讨论了如何产生参考信号,然后定义了参考信号和期望信号的接近性度量函数,最后提出了改进的稳健独立分量对比函数。仿真和试验结果表明,该算法在收敛速度和计算精度方面都明显优于传统的Fast ICA算法。 The method of independent component analysis is widely used in mechanical equipment fault diagnosis domain.A novel method named as constrained robust independent component analysis( cRobust ICA)based on Robust ICA algorithm is proposed which utilized prior information about the fault characteristic frequency.Firstly,how to create the reference signal is discussed.Then,the measurement function between reference signal and desired independent component( IC) is defined.At last,an enhanced contrast function is acquired by modifying a generally used kurtosis contrast function with closeness measurement.A contrastive study on the conventional Fast ICA is adopted to demonstrate the effectiveness and accuracy of the cRobust ICA by numerical simulations and experiments.
出处 《机械传动》 CSCD 北大核心 2015年第11期154-160,共7页 Journal of Mechanical Transmission
基金 中央高校基本科研业务费专项资金(ZYGX2012J099)
关键词 故障诊断 独立分量分析 RobustICA 参考信号 滚动轴承 Fault diagnosis Independent component analysis Robust ICA Reference signal Rolling element bearing
  • 相关文献

参考文献15

二级参考文献74

  • 1胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 2梅宏斌.滚动轴承振动检测与诊断[M].北京:机械工业出版社,1995.. 被引量:10
  • 3Seungjin Choi, A.C., Hyung-Min Park and Soo-Young Lee, Blind Source Separation and Independent Component Analysis:A Review.Neural Information Processing - Letters and Reviews, 2005.Vol.6(No.1): p.1-57. 被引量:1
  • 4Puntonet, C.G.and E.W.Lang, Blind source separation and independent component analysis.Neurocomputing, 2006.69(13-15): p.1413-1413. 被引量:1
  • 5Hyvarinen, A.and Hyvarinen, Independent component analysis: algorithms and applications.Neural computation, 2001.13(7): p.1527. 被引量:1
  • 6Kardec Barros, A., J.Carlos Principe, and D.Erdogmus, Independent Component Analysis and Blind Source Separation.Signal Processing, 2007.87(8): p.1817-1818. 被引量:1
  • 7Barros, A.K.and A.Cichocki, Extraction of Specific Signals with Temporal Structure.Neural Computation, 2001.13(9): p.1995-2003. 被引量:1
  • 8James, C.J., Gibson, O.J., Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis.IEEE Transactions on Biomedical Engineering, 2003.50(9): p.1108-1116. 被引量:1
  • 9Hyvarinen, A., One-Unit Contrast Functions for Independent Component Analysis: A Statistical Analysis.Neural Networks for Signal Processing 1997.VII: p.388-397. 被引量:1
  • 10Hyvarinen, A., Fast and Robust Fixed-Point Algorithms for Independent Component Analysis.IEEE Transactions on Neural Networks, 1999.10(3): p.626-634. 被引量:1

共引文献39

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部