期刊文献+

基于约束独立成分分析的轴承复合故障特征提取方法 被引量:5

Application of CICA in Compound Fault Feature Extracting of Rolling Bearings
下载PDF
导出
摘要 为从复合故障信号中提取各故障特征,提出一种离散小波变换(DWT)和约束独立成分分析(CICA)相结合的单通道复合故障诊断方法。首先通过DWT方法将单通道振动信号进行小波分解后,利用小波重构函数重构各层分解信号。然后取重构信号的包络信号作为CICA算法的输入矩阵,基于滚动轴承先验知识建立参考信号,从而分离出轴承各故障信号,提取故障特征。最后,在滚动轴承故障模拟实验台上进行了方法验证。结果表明:该方法可有效分离滚动轴承外圈和滚动体故障,实现了轴承复合故障的诊断。 In order to extract fault features from compound signals, a method based on discrete wavelet transform(DWT) and constrained independent component analysis(CICA) was proposed. In this method, the single channel vibration signal was decomposed into several wavelet coefficients by DWT method, and the wavelet re-construction function was used to reconstruct the decomposed signal. Then, envelope signals of the reconstructed wavelet coefficients were selected as the input matrix of CICA algorithm, and the reference signal was established based on prior knowledge of source signals.Finally, the fault signals were separated and the fault features were extracted. Experimental results validated the effectiveness of the proposed method in compound fault separating and diagnosis of rolling bearings.
出处 《噪声与振动控制》 CSCD 2015年第3期173-176,共4页 Noise and Vibration Control
基金 国家自然科学基金项目(51375037)
关键词 振动与波 复合故障诊断 约束独立成分分析 离散小波变换 滚动轴承 vibration and wave compound fault diagnosis constrained independent component analysis(CICA) discrete wavelet transform(DWT) rolling bearing
  • 相关文献

参考文献9

二级参考文献58

共引文献77

同被引文献43

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部