期刊文献+

基于PSO-SVR的冷水机组运行能效预测模型研究 被引量:10

Research on COP Prediction Model of Chiller Based on PSO-SVR
下载PDF
导出
摘要 针对冷水机组运行能效模型结构复杂、受运行参数影响较大、机理建模困难等问题,本文建立了基于支持向量回归机的冷水机组运行能效预测模型,并采用粒子群优化算法对模型参数寻优,提高了模型的精度。论文以某商场中央空调离心式冷水机组为研究对象,随机选取396组运行数据对建立的模型进行训练和测试。结果表明,基于粒子群算法优化的冷水机组支持向量回归机模型较BP神经网络模型具有较高的预测精度,其相对误差基本上在3%以内。最后分别采集夏季和过渡季两日的运行数据验证模型的有效性,验证相对误差均在5%以内,因此,该模型能准确地反应冷水机组的运行能效,为冷水机组运行能效分析、故障诊断以及优化控制等提供参考依据。 Since the difficulty of building mechanism model and the structure of COP model of chiller is complex, greatly affected by op- erating parameter, a COP prediction model of chiller is proposed based on Support Vector Regression, and the parameters are optimized by Particle Swarm Optimization algorithm. In this paper, 396 sets of operating data of chiller of a shopping mall are randomly selected to train and test this model. The results shows that the prediction accuracy of SVR model based on PSO optimization algorithm is higher than that of BP neural network and the relative error is within 3%. At last, operating data of two days in summer and transition season are randomly selected to verify the model. The relative error is within 5%. So this model can provide theoretical basis for the chiller energy efficiency analysis, fault detection and diagnosis and optimizing control.
出处 《制冷学报》 CAS CSCD 北大核心 2015年第5期87-93,106,共8页 Journal of Refrigeration
基金 广东省科技厅支撑项目--中央空调运行能效在线检测与优化控制(2011B061200043)资助~~
关键词 冷水机组 运行能效 预测模型 支持向量回归机 粒子群算法 chiller COP prediction model support vector regression particle swarm optimization
  • 相关文献

参考文献16

  • 1严中俊,闫军威.基于BP神经网络的冷水机组能效预测方法[J].制冷与空调(四川),2013,27(5):443-446. 被引量:10
  • 2Lee T S, Liao K Y, Lu W C. Evaluation of the suitability of empirically-based models for predicting energy perform- ance of centrifugal water chillers with variable chilled water flow[ J]. Applied Energy, 2012, 93 (Suppl.) : 1721- 1729. 被引量:1
  • 3JinG Y, Tan P Y, Ding X D, et al. A hybrid water- cooled centrifugal chiller model [ C ]//In Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, 2011: 2298-2303. 被引量:1
  • 4Manohar H J, Saravanan R, Renganarayanan S. Modeling of steam fired double effect vapor absorption chiller using neural network [ J ]. Energy Conservation and Management, 2006,47 (15/16) :2202-2210. 被引量:1
  • 5Chang Yungchung. Sequencing of chillers by estimating chiller power consumption using articial neural networks [ J]. Building and Environment,2007,42( 1 ) : 180-188. 被引量:1
  • 6梁伟锋..支持向量回归机研究及其应用[D].浙江师范大学,2006:
  • 7辛宪会..支持向量机理论、算法与实现[D].中国人民解放军信息工程大学,2005:
  • 8杨际祥,谭国真,王凡,田珠,潘东.实时交通流预测的并行SVR预测方法[J].大连理工大学学报,2010,50(6):1035-1041. 被引量:1
  • 9阎满富,田英杰.改进的支持向量回归机[J].系统工程,2004,22(10):9-12. 被引量:7
  • 10李红英..支持向量分类机的核函数研究[D].重庆大学,2009:

二级参考文献74

共引文献162

同被引文献83

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部