期刊文献+

基于PSO-SVR的气膜薄壳钢筋混凝土穹顶储仓的工期预测

Forecasting of Duration for Thin-shell Concrete Dome Using Inflated Forms Based on PSO-SVR Model
下载PDF
导出
摘要 为客观、合理地进行气膜薄壳钢筋混凝土穹顶储仓的工期预测,提出了基于PSO-SVR的预测方法。采用粒子群算法(particle swarm optimization,PSO)对支持向量回归机(support vector regression,SVR)的参数进行优化,并运用优化后的支持向量回归机对气膜薄壳钢筋混凝土穹顶储仓的工期进行预测。通过实例验证表明:PSO-SVR模型的预测效果优于遗传算法(GA-SVR)和串联型灰色神经网络(SGNN)。 In order to forecast the duration on thin-shell concrete dome using inflated forms objectively and reasonably, the artical presents a prediction method named PSO-SVR. Using PSO to optimize the parameter of SVR, and forecasting the duration on thin-shell concrete dome using inflated forms by support vector regression which is optimized. The example show that the prediction effect of PSO-SVR model is better than genetic algorithm(GA-SVR) and series of grey neural network(SGNN).
出处 《价值工程》 2017年第5期35-37,共3页 Value Engineering
关键词 气膜薄壳钢筋混凝土穹顶储仓 工期预测 PSO-SVR thin-shell concrete dome using inflated forms forecasting of the duration PSO-SVR
  • 相关文献

参考文献9

二级参考文献110

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部